Skip to main content

Breeding for Low Phytates and Oligosaccharides in Mungbean and Blackgram

  • Chapter
  • First Online:
Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes

Abstract

Mungbean or Green gram (Vigna radiata [L.] Wilczek) and blackgram (V. mungo [L.] Hepper) are important legume crops in Asia, where it is a major source of dietary protein for its predominantly vegetarian population. Both mungbean and blackgram are consumed in various forms in their diet, as they are a rich source of protein, carbohydrates, and minerals. These crops also accumulate certain antinutritional factors such as phytic acid (PA) and oligosaccharides in their seeds along with others. Breeding efforts are underway to breed varieties with reduced content of PA and oligosaccharides. Genetic variation for PA and oligosaccharide content in mungbean and blackgram ranged from 6.17 to 12 mgg−1and 6.97 to 7.50 mgg−1, respectively. Low PA content was reported in mungbean VC-6379 (5.74 mg g−1), YBSM (5.85 mg g−1), blackgram KUG-365 (1.7 mg g−1), Shekhar-2 (3.7 mg g−1), and KUG-230 (4.0 mg g−1) genotypes. In mungbean, PA accumulation was reported to be controlled by dominant alleles at two independent loci of major genes showing duplicate recessive epistasis. Two major QTLs, viz., SDPAP4.1 and SDPAP11.1, were also reported to be present on linkage group 4A and 11A in interval markers CEDG139-MBSSR179 and BM141-VR222. Genes and enzymes involved in the biosynthesis of PA and oligosaccharides are characterized in other legume crops which can help in the genetic manipulation of these traits toward the development of cultivars with reduced content without affecting their biological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy RH, Paulsen GM, Roscoe E Jr (1973) Relationship among phytic acid, phosphorus, and zinc during maturation of winter wheat. J Agric Food Chem 21:282–284

    Article  CAS  Google Scholar 

  • Aguilera Y, Martin-Cabrejas MA, Benitez V, Molla E, Lopez-Andreu FJ, Esteban RM (2009) Changes in carbohydrate fraction during dehydration process of common legumes. J Food Compos Anal 22:678–683

    Article  CAS  Google Scholar 

  • Alajaji SA, El-Adawy TA (2006) Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J Food Compos Anal 19:806–812

    Article  CAS  Google Scholar 

  • Albalasmeh AA, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr Polym 97:253–261

    Article  CAS  PubMed  Google Scholar 

  • Aman P (1979) Carbohydrates in raw and germinated seeds from mungbean and chickpea. J Sci Food Agric 30:869–875

    Article  Google Scholar 

  • Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15:211–218

    Article  CAS  PubMed  Google Scholar 

  • Anisha GS, Prema P (2008) Reduction of non-digestible oligosaccharides in horse gram and green gram flours using crude α-galactosidase from Streptomyces griseoloalbus. Food Chem 106:1175–1179

    Article  CAS  Google Scholar 

  • Anisha GS, John RP, Prema P (2011) Substrate specificities and mechanism of action of multiple α-galactosidases from Streptomyces griseoloalbus. Food Chem 124:349–353

    Article  CAS  Google Scholar 

  • Asif MI, Wani SA, Lone AA, Dar ZA, Nehvi FA (2013) Breeding for quality traits in grain legumes. In: Malik CP, Sanghera G, Wani SH (eds) Conventional and non-conventional interventions in crop improvement, pp 1–20

    Google Scholar 

  • Avigad SM, Dey PM (1997) In Plant Biochemistry (Eds. Dey PM, Harbourne J) Academic Press: San Diego, pp 143–204

    Google Scholar 

  • Bachmann M, Matile P, Keller F (1994) Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. (Cold acclimation, translocation, and sink to source transition: discovery of chain elongation enzyme). Plant Physiol 105:1335–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardocz S, Gelencser E, Pusztai A (1996) Effects of antinutrients on the nutritional value of legume diets, vol 1. ESSE-EC-EAEC, Brussels

    Google Scholar 

  • Bernabe M, Fenwick R, Frias J, Jimenez-Barbero J, Price K, Valverde S, Vidal-Valverde C (1993) Determination, by NMR spectroscopy, of the structure of ciceritol, a pseudotrisaccharide isolated from lentils. J Agric Food Chem 41:870–872

    Article  CAS  Google Scholar 

  • Bhati K, Aggarwal S, Sharma S, Mantri S, Singh S, Bhalla S, Kaur J, Tiwari S, Roy J, Tuli R (2014) Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.). Plant Sci 224:74–85

    Article  CAS  PubMed  Google Scholar 

  • Blackman SA, Obendorf RL, Leopold AC (1992) Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol 100:225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blöchl A, Peterbauer T, Richter A (2007) Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds. J Plant Physiol 164:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Blöchl A, Peterbauer T, Hofmann J, Richter A (2008) Enzymatic breakdown of raffinose oligosaccharides in pea seeds. Planta 228:99–110

    Article  PubMed  CAS  Google Scholar 

  • Bock C, Ray H, Georges F (2009) Down-regulation of galactinol synthesis in oilseed Brassica napus leads to significant reduction of anti-nutritional oligosaccharides. Botany 87:597–603

    Article  CAS  Google Scholar 

  • Bregitzer P, Raboy V (2006) Effects of four independent low phytate mutations on barley agronomic performance. Crop Sci 46:1318–1322

    Article  Google Scholar 

  • Brown KH, Solomons NW (1991) Nutritional problems of developing countries. Infect Dis Clin N Am 5:297–317

    Article  CAS  Google Scholar 

  • Brummer Y, Cui SW (2005) Understanding Carbohydrate analysis. In: Food carbohydrates: Chemistry, physical properties and applications; Cui SW. Eds.; CRC Press, Taylor & Francis Group (USA) Boca Raton

    Google Scholar 

  • Calderon-Villalobos LI, Tan X, Zheng N, Estelle M (2010) Auxin perception-structural insights. Cold Spring Harb Perspect Biol 2:a005546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso-Fileppi IM, Bollini R, Nielsen E (2009) Isolation and characterization of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Chappell A, Scaboo A, Wu X, Nguyen H, Pantalone V, Bilyeu K (2006) Characterization of the MIPS gene family in Glycine max. Plant Breed 125:493–500

    Article  CAS  Google Scholar 

  • Chen Q, Niu X, Chai M, Chen J, Liu Q, Wang X (2003) Isolation of an Arabidopsis gene encoding Ins (1,3,4) p-3 5/6-kinase-like protein and involved in plant response to abiotic stresses. Acta Bot Sin 45:211–218

    CAS  Google Scholar 

  • Cheryan M (1980) Phytic acid interactions in food systems. CRC Crit Rev Food Sci Nutr 13:297–325

    Article  CAS  Google Scholar 

  • Chitra U, Vimala V, Singh U, Geervani P (1995) Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods Hum Nutr 47(2):163–172

    Article  CAS  PubMed  Google Scholar 

  • Cicek MS, Chen P, Saghai Maroof MA, Buss GR (2006) Interrelationships among agronomic and seed quality traits in an interspecific soybean recombinant inbred population. Crop Sci 46:1253–1259

    Article  CAS  Google Scholar 

  • Corbineau F, Picard MA, Fougereux J, Ladonne F, Côme D (2000) Effects of dehydration conditions on desiccation tolerance of developing pea seeds as related to oligosaccharide content and cell membrane properties. Seed Sci Res 10:329–339

    Article  CAS  Google Scholar 

  • Couée C, Sulmon G, Gouesbet A, Amrani E (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  CAS  Google Scholar 

  • Cromwell GL, Coffey RD (1991) Phosphorous- a key essential nutrient, yet a possible major pollutant-its central role in animal nutrition. In: Lyons TP (ed) Biotechnology in the feed industry. Alltech Tech Publishers, Nicholaville, pp 133–145

    Google Scholar 

  • Cunningham SM, Nadeau P, Castonguay Y, Laberge S, Volenec JJ (2003) Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms. Crop Sci 43:562–570

    Article  CAS  Google Scholar 

  • Dahiya PK, Linnemann AR, Nout MJR, Boekel MAJS, Grewal RB (2013) Nutrient composition of selected newly bred and established mungbean varieties. LWT – Food Sci Tech 54:249–256

    Article  CAS  Google Scholar 

  • Das A, Raychaudhuri U, Chakraborty R (2012) Cereal based functional food of Indian subcontinent: a review. J Food Sci Tech 49(6):665–672

    Article  CAS  Google Scholar 

  • Debnath D, Sahu NP, Pal AK, Baruah K, Yengkokpam S, Mukherjee SC (2005) Present scenario and future prospects of phytase in aquafeed -review. Asian-Australas J Anim Sci 18:1800–1812

    Article  CAS  Google Scholar 

  • Desai M, Rangarajan P, Donahue J, Williams S, Land E, Mandal M, Phillippy B, Perera I, Raboy V, Gillaspy G (2014) Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. Plant J 80:642–653

    Article  CAS  PubMed  Google Scholar 

  • Dhole VJ, Reddy KS (2015) Genetic variation for phytic acid content in mungbean (Vigna radiata L. Wilczek). Crop J 3:157–162

    Article  Google Scholar 

  • Dhole VJ, Reddy KS (2016) Association of phytic acid content with biotic stress tolerance in mungbean (Vigna radiata L. Wilczek). Phytoparasitica 44(2):261–267

    Article  CAS  Google Scholar 

  • Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. C R Biol 333:307–319

    Article  CAS  PubMed  Google Scholar 

  • Donahue J, Alford S, Torabinejad J, Kerwin R, Nourbakhsh A, Ray W, Hernick M, Huang X, Lyons B, Hein P (2010) The Arabidopsis thaliana myo-inositol 1-phosphate synthase1 gene is required for myo-inositol synthesis and suppression of cell death. Plant Cell 22:888–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dost K, Tokul O (2006) Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal Chim Acta 558:22–27

    Article  CAS  Google Scholar 

  • Duhan A, Chauhan BM, Kapoor AC (1989) Phytic acid content of chickpea (Cicer arietinum) and black gram (Vigna mungo): varietal differences and effect of domestic processing and cooking methods. J Sci Food Agric 49:449–455

    Article  CAS  Google Scholar 

  • Enneking D, Wink M (2000) Towards elimination of anti-nutritional factors in grain legumes. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Academic Publishers, Dordrecht, pp 671–683

    Chapter  Google Scholar 

  • Erdman JW (1981) Bioavailability of trace minerals from cereals and legumes. Cereal Chem 58:21–26

    CAS  Google Scholar 

  • Ertl DS, Young KA, Raboy V (1998) Plant genetic approaches to phosphorus management in agricultural production. J Environ Qual 27:299–304

    Article  CAS  Google Scholar 

  • Fassetti F, Leone O, Palopoli L, Rombo SE, Saiardi A (2011) IP6K gene identification in plant genomes by tag searching. BMC Proc 5. https://doi.org/10.1186/1753-6561-5-S2-S1

  • Fileppi M, Galasso I, Tagliabue G, Daminati M, Campion B, Doria E, Sparvoli F (2010) Characterisation of structural genes involved in phytic acid biosynthesis in common bean (Phaseolus vulgaris L.). Mol Breed 25:453–470

    Article  CAS  Google Scholar 

  • Frias J, Bakhsh A, Jones DA, Arthur AE, Vidal-Valverde C, Rhodes MJC et al (1999) Genetic analysis of the raffinose oligosaccharide pathway in lentil seeds. J Exp Bot 50:469–476

    Article  CAS  Google Scholar 

  • Frias J, Vidal-Valverde C, Sotomayor C, Diaz-Pollan C, Urbano G (2000) Influence of processing on available carbohydrate content and antinutritional factors of chickpeas. Eur Food Res Technol 210:340–345

    Article  CAS  Google Scholar 

  • Fu J, Peterson K, Guttieri M, Souza E, Raboy V (2008) Barley (Hordeum vulgare L.) inositol monophosphatase: gene structure and enzyme characteristics. Plant Mol Biol 67:629–642

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Shang C, Saghai Maroof MA, Biyashev RM, Grabau EA, Kwanyuen P, Burton JW, Buss GR (2007) A modified colorimetric method for phytic acid analysis in soybean. Crop Sci 47:1797–1803

    Article  CAS  Google Scholar 

  • Gillaspy GE, Keddie JS, Oda K, Gruissem W (1995) Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7:2175–2185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillman J, Pantalone V, Bilyeu K (2009) The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Genome 2:179–190

    Article  CAS  Google Scholar 

  • Girigowda K, Prashanth SJ, Mulimani VH (2005) Oligosaccharides of black gram (Vigna mungo L.) as affected by processing methods. Plant Foods Hum Nutr 60:173–180

    Article  CAS  PubMed  Google Scholar 

  • Girigowda K, Peterbauer T, Mulimani VH (2006) Isolation and structural analysis of ajugose from Vigna mungo L. Carbohydr Res 341:2156–2160

    Article  CAS  Google Scholar 

  • Griga M, Kosturkova G, Kuchuk N, Ilieva-Stoilova M (2001) Biotechnology. In: Hedley CL (ed) Carbohydrates in grain legume seeds. Improving nutritional quality and agronomic characteristics. CAB International, Wallingford, pp 145–207

    Google Scholar 

  • Guttieri M, Bowen D, Dorsch JA, Raboy V, Souza E (2004) Identification and characterization of low phytic acid wheat. Crop Sci 44:418–424

    Article  CAS  Google Scholar 

  • Haab CI, Keller F (2002) Purification and characterization of the raffinose oligosaccharide chain elongation enzyme, galactan:galactan galactosyltransferase (GGT), from Ajuga reptans leaves. Physiol Plant 114:361–371

    Article  CAS  PubMed  Google Scholar 

  • Han IH, Baik B (2006) Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound, and high hydrostatic pressure. Cereal Chem 83:428–433

    Article  CAS  Google Scholar 

  • Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102:721–729

    Article  CAS  PubMed  Google Scholar 

  • Hande PA, Mondal S, Badigannavar AM, D'Souza SF (2013) Genetic variability of phytic acid phosphorus and inorganic phosphorus in cultivated groundnut (Arachis hypogaea L.). Plant Genet Resour 11(3):190–195

    Article  CAS  Google Scholar 

  • Hoch G, Peterbauer T, Richter A(1999) Purification and characterization of stachyose synthase from lentil (Lens culinaris) seeds: galactopinitol and stachyose synthesis. Arch. Biochem. Biophys. 366: 75–81.

    Google Scholar 

  • Hoffmann CM, Huijbregts T, van Swaaij N, Jansen R (2009) Impact of different environments in Europe on yield and quality of sugar beet genotypes. Eur J Agron 30:17–26

    Article  CAS  Google Scholar 

  • Horbowicz M, Obendorf RL (1994) Seed desiccation tolerance and storability: dependence on flatulence-producing oligosaccharides and cyclitols-review and survey. Seed Sci Res 4:385

    Article  CAS  Google Scholar 

  • Hoy M, Efanov AM, Bertorello AM, Zaitsev SV, Olsen HL, Bokvist K, Leibiger B, Leibiger IB, Zwiller J, Berggren PO (2002) Inositol hexakisphosphate promotes dynamin I-mediated endocytosis. Proc Natl Acad Sci:6773–6777

    Google Scholar 

  • Institute of Medicine, Food and Nutrition Board (2001) Dietary reference intakes for vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, Iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC. http://ods.od.nih.gov/factsheets/zinc-HealthProfessional/

    Google Scholar 

  • Jaureguy LM, Chen P, Scaboo AM (2011) Heritability and correlations among food-grade traits in soybean. Plant Breed 13:647–652

    Article  Google Scholar 

  • Joersbo M, Guldager Pedersen S, Nielsen JE, Marcussen J, Brunstedt J (1999) Isolation and expression of two cDNA clones encoding UDP-galactose epimerase expressed in developing seeds of the endospermous legume guar. Plant Sci 142:147–154

    Article  CAS  Google Scholar 

  • Jones GP (1997) Minerals. In: Wahlquist ML (ed) Food and nutrition. Allen & Unwin, Sydney, pp 249–254

    Google Scholar 

  • Jones DA, DuPont MS, Ambrose MJ, Frias J, Hedley CL (1999) The discovery of compositional variation for the raffinose family of oligosaccharides in pea seeds. Seed Sci Res 9:305–310

    Article  CAS  Google Scholar 

  • Joyce C, Deneau A, Peterson K, Ockenden I, Raboy V, Lott JNA (2005) The concentrations and distributions of phytic acid phosphorus and other mineral nutrients in wild-type and low phytic acid Js-12-LPA wheat (Triticum aestivum) grain parts. Can J Bot 83(12):1599–1607

    Article  CAS  Google Scholar 

  • Kakati P, Deka SC, Kotoki D, Saikia S (2010) Effect of traditional methods of processing on the nutrient contents and some antinutritional factors in newly developed cultivars of green gram [Vigna radiata (L.) Wilezek] and black gram [Vigna mungo (L.) Hepper] of Assam, India. Int Food Res J 17:377–384

    CAS  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arab Book 9:e0153

    Article  Google Scholar 

  • Karner U, Peterbauer T, Raboy V, Jones DA, Hedley CL, Richter A (2004) Myo-inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds. J Exp Bot 55:1981–1987

    Article  CAS  PubMed  Google Scholar 

  • Kataria A, Chauhan BM, Punia D (1989) Anti-nutrients in amphidiploids (Black gram x Mungbean): varietal differences and effect of domestic processing and cooking. Plant Foods Hum Nutr 39:257–266

    Article  CAS  PubMed  Google Scholar 

  • Keller F (1992) Galactinol synthase is an extravacuolar enzyme in tubers of japanese artichoke (Stachys sieboldii). Plant Physiol 99:1251–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr PS, Pearlstein RW, Schweiger BJ, Becker-Manley MF, Pierce JW, inventors (1998) Nucleotide sequences of galactinol synthase from zucchini and soybean. U.S. Patent Application No. 5773699. June 30, 1998

    Google Scholar 

  • Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Tai T (2011) Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. Mol Genet Genomics 286:119–133

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Tai T (2014) Identification of novel rice low phytic acid mutations via TILLING by sequencing. Mol Breed 34:1717–1729

    Article  CAS  Google Scholar 

  • Kim S, Andaya C, Goyal S, Tai T (2008) The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet 117:769–779

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Burla B, Martinoia E (2006) The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580:1112–1122

    Article  CAS  PubMed  Google Scholar 

  • Koster KL (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96:302–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koster KL, Leopold AC (1988) Sugars and desiccation tolerance in seeds. Plant Physiol 88:829–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS, Beckeret K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959

    Article  CAS  Google Scholar 

  • Kuo TM, Van Middlesworth JF, Wolf WJ (1988) Content of raffinose oligosaccharides and sucrose in various plant seeds. J Agric Food Chem 36:32–36

    Article  CAS  Google Scholar 

  • Laha D, Johnen P, Azevedo C, Dynowski M, Weiss M, Capolicchio S, Mao H, Iven T, Steenbergen M, Freyer M (2015) VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis. Plant Cell 27:1082–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahuta LB, Goszczyńska J, Horbowicz M, Hołdyński C, Górecki RJ (2010) Cyclitols affect accumulation of α-d-galactosides in developing Vicia seeds. Acta Physiol Plant 32:933–944

    Article  CAS  Google Scholar 

  • Larson SR, Young KA, Cook A, Blake TK, Raboy V (1998) Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor Appl Genet 97:141–146

    Article  CAS  Google Scholar 

  • Latta M, Eskin M (1980) A simple and rapid colorimetric method for phytate determination. J Agric Food Chem 28:1313–1315

    Article  CAS  Google Scholar 

  • Lattanzio V, Terzano R, Cicco N, Cardinali A, Di-Venere D, Linsalata V (2005) Seed coat tannins and bruchid resistance in stored cowpea seeds. J Sci Food Agric 85:839–846

    Article  CAS  Google Scholar 

  • Leeson S (1993) Recent advances in fat utilisation by poultry. In: Recent advances in animal nutrition in Australia. The University of New England, Armidale, pp 170–1981

    Google Scholar 

  • Lehle L, Tanner W (1973) The function of myo-inositol in the biosynthesis of raffinose. Eur J Biochem 38:103–110

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Odegard W, de Lumen BO (1995) Galactinol synthase from kidney bean cotyledon and zucchini leaf (purification and n-terminal sequences). Plant Physiol 109:505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewus F (2002) Biosynthesis of phytate in food grains and seeds. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 53–61

    Google Scholar 

  • Loewus FA, Murthy PPN (2000) myo-Inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • Lott JNA (1980) Protein Bodies. In: Tolbert NE (ed) The biochemistry of plants. Academic Press, New York, pp 589–623

    Google Scholar 

  • Luo Y, Qin G, Zhang J, Liang Y, Song Y, Zhao M, Tsuge T, Aoyama T, Liu J, Gu H (2011) D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. Plant Cell 23:1352–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macbeth MR, Schubert HL, Van Demark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309:1534–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali G, Sala M, Arcon I, Kaucic V, Kolar J (2006) Insight into the short-range structure of amorphous iron inositol hexaphosphate as provided by P-31 NMR and Fe X-ray absorption spectroscopy. J Phys Chem B 110(46):23060–23067

    Google Scholar 

  • March JG, Villacampa AI, Grases F (1995) Enzymatic-spectrophotometric determination of phytic acid with phytase from Aspergillus ficuum. Anal Chim Acta 300:269–272

    Article  CAS  Google Scholar 

  • March JG, Simonet BM, Grases F (2001) Determination of phytic acid by gas chromatography–mass spectroscopy: application to biological samples. J Chromatogr B 757:247–255

    Article  CAS  Google Scholar 

  • Martínez-Villaluenga C, Frias J, Vidal-Valverde C (2008) Alpha-galactosides: antinutritional factors or functional ingredients? Crit Rev Food Sci Nutr 48:301–316

    Article  PubMed  CAS  Google Scholar 

  • Matyka S, Korol W, Bogusz G (1990) The retention of phytin phosphorus from diets with fat supplements in broiler chickens. Anim Feed Sci Technol 31:223–230

    Article  CAS  Google Scholar 

  • Moresco H, Sansón P, Seoane G (2008) Simple potentiometric determination of reducing sugars. J Chem Edu 85:1091–1093

    Article  CAS  Google Scholar 

  • Mubarak AE (2005) Nutritional composition and anti-nutritional factors of mungbean seeds 40 (Phaseolus aureus) as affected by some home traditional processes. Food Chem 89:489–495

    Article  CAS  Google Scholar 

  • Mulimani VH, Devindra S (1998) Effect of soaking, cooking and crude α-galactosidase treatment on the oligosaccharide content of redgram flour. Food Chem 61:475–479

    Article  CAS  Google Scholar 

  • Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56:638–652

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008a) The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signal Behav 3:1016–1018

    Article  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008b) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. https://doi.org/10.1104/pp.108.122465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obendorf RL, Odorcic S, Ueda T, Coseo MP, Vassallo E(2004) Soybean galactinol synthase forms fagopyritol B1 but not galactopinitols: substrate feeding of isolated embryos and heterologous expression. Seed Sci. Res. 14: 321–333.

    Google Scholar 

  • O’Dell BL, de Boland A (1976) Complexation of phytate with proteins and cations in corn rain and oilseed meals. J Agric Food Chem 24:804–808

    Article  Google Scholar 

  • O’Dell BL, de Boland AR, Koirtyohann SR (1972) Distribution of phytate and nutritionally important elements among morphological components of cereal grains. J Agric Food Chem 20(3):718–721

    Article  Google Scholar 

  • Ockenden I, Dorsch JA, Reid MM, Lin L, Grant LK, Raboy V, Lott JNA (2004) Characterization of the storage of phosphorus, inositol phosphate and cations in grain issues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Sci 167:1131–1142

    Article  CAS  Google Scholar 

  • Odom A, Stahlberg A, Wente S, York J (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    Article  CAS  PubMed  Google Scholar 

  • Pande R, Mishra HN (2015) Fourier transform near-infrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata). Food Chem 172:880–884

    Article  CAS  PubMed  Google Scholar 

  • Panzeri D, Cassani E, Doria E, Tagliabue G, Forti L, Campion B, Bollini R, Brearley CA, Pilu R, Nielsen E et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters aba sensitivity. New Phytol 191:70–83

    Article  CAS  PubMed  Google Scholar 

  • Pattee HE, Isleib TG, Giesbrecht FG, McFeeters RF (2000) Investigations into genotypic variations of peanut carbohydrates. J Agric Food Chem 48:750–756

    Article  CAS  PubMed  Google Scholar 

  • Peterbauer T, Richter A (1998) Galactosylononitol and stachyose synthesis in seeds of adzuki bean: purification and characterization of stachyose synthase. Plant Physiol 117:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci Res 11:85–197

    Google Scholar 

  • Peterbauer T, Mucha J, Mayer U, Popp M, Glossl J, Richter A (1999) Stachyose synthesis in seeds of adzuki bean (Vigna angularis): molecular cloning and functional expression of stachyose synthase. Plant J 20:509–518

    Article  CAS  PubMed  Google Scholar 

  • Peterbauer T, Lahuta LB, Blochl A, Mucha J, Jones DA, Hedley CL, Gorecki RJ, Richter A (2001) Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol 127:1764–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterbauer T, Mucha J, Mach L, Richter A (2002) Chain elongation of raffinose in pea seeds.Isolation, characterization, and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. J Biol Chem 277:194–200

    Article  CAS  PubMed  Google Scholar 

  • Polowick PL, Baliski DS, Bock C, Ray H, Georges F (2009) Over-expression of α-galactosidase in pea seeds to reduce raffinose oligosaccharide content. Botany 87:526–532

    Article  CAS  Google Scholar 

  • Pukacka S, Ratajczak E, Kalemba E (2009) Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. J Plant Physiol 166:1381–1390

    Article  CAS  PubMed  Google Scholar 

  • Quemener B, Brillouet J (1983) Ciceritol, a pinitol digalactoside form seeds of chickpea, lentil and white lupin. Phytochemistry 22:1745–1751

    Article  CAS  Google Scholar 

  • Raboy V (1997) Accumulation and storage of phosphate and minerals. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic Publishers, Dordrecht, pp 441–477

    Chapter  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    Article  PubMed  Google Scholar 

  • Raboy V, Gerbasi P (1996) Genetics of myo-inositol phosphate synthesis and accumulation. In: Biswas B, Biswas S (eds) Myo-inositol phosphates, phosphoinositides and signal transduction. Plenum Press, New York, pp 257–285

    Chapter  Google Scholar 

  • Raboy V, Gerbasi P, Young K, Stoneberg S, Pickett S, Bauman A, Murthy P, Sheridan W, Ertl D (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao PU, Belvady B (1978) Oligosaccharides in pulses: varietal differences and effects of cooking and germination. J Agric Food Chem 26:316–319

    Article  CAS  Google Scholar 

  • Rao VS, Vakil UK (1983) Effects of gamma-irradiation on flatulence-causing oligosaccharides in green gram (Phaseolus aureus). J Food Sci 48:1791–1795

    Article  Google Scholar 

  • Ravindran V, Bryden WL, Kornegay ET (1995) Phytates: occurrence, bioavailability, and implications in poultry nutrition. Avian Poult Biol Rev 6:125–143

    Google Scholar 

  • Reddy NR (2002) Occurrence, distribution, content, and dietary intake of phytate. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 25–51

    Google Scholar 

  • Reddy NR, Salunkhe DK (1989) Fermentation. In: Salunkhe DK, Kadam SS (eds) CRC handbook of world food legumes: Nutritional chemistry, processing technology, and utilisation, vol 3. CRC Press, Boca Raton, pp 177–1217

    Google Scholar 

  • Reddy NR, Salunkhe DK, Sharma RP (1980) Flatulence in rats following ingestion of cooked and germinated black gram and a fermented product of black gram and rice blend. J Food Sci 45:1161–1164

    Article  CAS  Google Scholar 

  • Reddy NR, Pierson MD, Sathe SK, Salunke DK (1984) Chemical, nutritional and physiological aspects of dry bean carbohydrates; a review. Food Chem 13:25–68

    Article  CAS  Google Scholar 

  • Rickard SE, Thompson LU (1997) Interactions and biological effects of phytic acid. In: Shaidi F (ed) Antinutrients and phytochemicals in food. American Chemical Society, Washington, DC, pp 294–312

    Chapter  Google Scholar 

  • Salih OM, Nour AM, Harper DB (1991) Nutritional quality of uncultivated cereal grains utilised as famine foods in western Sudan as measured by chemical analysis. J Sci Food Agric 57:367–377

    Article  CAS  Google Scholar 

  • Sánchez-Mata MC, Cámara Hurtado M, Díez-Marqués C (1999) Effect of domestic processes and water hardness on soluble sugars content of chickpeas (Cicer arietinum L.). Food Chem 65:331–338

    Article  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Selle PH, Ravindran V, Caldwell RA, Bryden WL (2000) Phytate and phytase: consequences for protein utilisation. Nutr Res Rev 13:255–278

    Article  CAS  PubMed  Google Scholar 

  • Shears SB (2015) Inositol pyrophosphates: why so many phosphates? Adv Biol Regul 57:203–216

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Wu Y, Hazebroek J, Meeley R, Ertl D (2003) The maize low-phytic acid mutant 1pa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Wang H, Hazebroek J, Ertl D, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J, Meeley R, Ertl D, Ranch J, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotech 25:930–937

    Article  CAS  Google Scholar 

  • Shitre AS, Gadekar DA, Ramachandran V, Vikas R, Bakshi S, Kumar V, Vishwakarma G, Das BK (2015) Genotypic variation for phytic acid, inorganic phosphate and mineral contents in advanced breeding lines of wheat (Triticum aestivum L.). Electron J Plant Breed 6(2):395–402

    Google Scholar 

  • Singh M, Krikorian AD (1982) Inhibition of trypsin activity in vitro by phytate. J Agric Food Chem 30:799–800

    Article  CAS  Google Scholar 

  • Sompong U, Kaewprasit C, Nakasathienl S, Srinives P (2010) Inheritance of seed phytate in mungbean (Vigna radiata L. Wilczek). Euphytica 171:389–396

    Article  CAS  Google Scholar 

  • Sompong U, Somta P, Raboy V, Srinives P (2012) Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek). Breed Sci 62:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosulski FW, Elkowicz L, Reichert RD (1982) Oligosaccharides in eleven legumes and their air-classified protein and starch fractions. J Food Sci 47:498–502

    Article  CAS  Google Scholar 

  • Souframanien J, Roja G, Gopalakrishna T (2014) Genetic variation in raffinose family oligosaccharides and sucrose content in black gram [Vigna mungo L. (Hepper)]. J Food Legumes 27:37–41

    Google Scholar 

  • Sparvoli F, Cominelli E (2015) Seed biofortification and phytic acid reduction: a conflict of interest for the plant? Plan Theory 4:728–755

    CAS  Google Scholar 

  • Sprenger N, Keller F (2000) Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J 21:249–258

    Article  CAS  PubMed  Google Scholar 

  • Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299:114–116

    Article  CAS  PubMed  Google Scholar 

  • Stiles A, Qian X, Shears S, Grabau E (2008) Metabolic and signaling properties of an ITPK gene family in Glycine max. FEBS Lett 582:1853–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suneja Y, Kaur S, Gupta AK, Kaur N (2011) Levels of nutritional constituents and antinutritional factors in black gram (Vigna mungo L. Hepper). Food Res Int 44:621–628

    Article  CAS  Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    Article  CAS  PubMed  Google Scholar 

  • Sweetman D, Stavridou I, Johnson S, Green P, Caddick S, Brearley C (2007) Arabidopsis thaliana inositol 1,3,4-trisphosphate 5/6-kinase 4 (AtITPK4) is an outlier to a family of ATP-grasp fold proteins from Arabidopsis. FEBS Lett 581:4165–4171

    Article  CAS  PubMed  Google Scholar 

  • Tahir M, Vandenberg A, Chibbar RN (2011) Influence of environment on seed soluble carbohydrates in selected lentil cultivars. J Food Compos Anal 24:596–602

    Article  CAS  Google Scholar 

  • Tajoddin M, Shinde M, Junna L (2010) Raffinose, stachyose and sucrose contents of mung bean cultivars differing in seed coat color from Hyderabad-Karnataka region of India: effect of soaking and germination. Bioscan 5:343–346

    Google Scholar 

  • Tajoddin MD, Shinde M, Lalitha J (2011) In vivo reduction the phytic acid content of mungbean (Phaseolus aureus L.) cultivars during germination. Am-Euras J Agric Environ Sci 10:127–132

    Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon AM, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

  • Tapernoux-Luthi E, Bohm A, Keller F (2004) Cloning, functional expression, and characterization of the raffinose oligosaccharide chain elongation enzyme, galactan:galactan galactosyltransferase, from common bugle leaves. Plant Physiol 134:1377–1387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taunk J, Yadav NR, Yadav RC, Kumar R (2012) Genetic diversity among green gram [Vigna radiata (L.) Wilczek] genotypes varying in micronutrients (Fe and Zn) content using RAPD markers. Indian J Biotechnol 11:48–53

    CAS  Google Scholar 

  • Thompson DB, Erdman JW (1982) Structural model for ferric phytate-implications for phytic acid analysis. Cereal Chem 59(6):525–528

    CAS  Google Scholar 

  • Torabinejad J, Donahue J, Gunesekera B, Allen-Daniels M, Gillaspy G (2009) VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tur F, Tur E, Lentheric I, Mendoza P, Encabo M, Isern B, Grases F, Maraschiello C, Perelló J (2013) Validation of an LC–MS bioanalytical method for quantification of phytate levels in rat, dog and human plasma. J Chromatogr B 928:146–154

    Article  CAS  Google Scholar 

  • Turgeon R (1991) Symplastic phloem loading and the sink-source transition in leaves: a model. In: Bonnemain VL, Delrot S, Dainty J, Lucas WJ (eds) Recent advances phloem transport and assimilate compartmentation. Ouest Editions, Nantes, pp 18–22

    Google Scholar 

  • Turgeon R (1996) Phloem loading and plasmodesmata. Trends Plant Sci 1:418–423

    Article  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Article  PubMed  CAS  Google Scholar 

  • Veldman A, Veen WAG, Barug D, Van Paridon PA (1993) Effect of α - galactosides and α-galactosidase in feed on ileal piglet digestive physiology. J Anim Physiol Anim Nutr 69:57–65

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Daun J K (2004) The chemical composition and nutritive value of Canadian pulses. In: Canadian Grain Commission Report. pp. 19–29

    Google Scholar 

  • Wang Z, Zhu Y, Wang L, Liu X, Liu Y, Phillips J et al (2009) A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta 230:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Wanke D, Kolukisaoglu H (2010) An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? Plant Biol 12:15–25

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Torabinejad J, Cohick E, Parker K, Drake E, Thompson J, Hortter M, DeWald D (2005) Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of Ptdins(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol 138:686–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson M, Majerus P (1997) Characterization of a cDNA encoding Arabidopsis thaliana inositol 1,3,4-trisphosphate 5/6-kinase. Biochem Biophys Res Commun 232:678–681

    Article  CAS  PubMed  Google Scholar 

  • Wongkaew A, Nakasathien S, Srinives P (2010) Isolation and characterization of d -myo-inositol-3-phosphate synthase from mungbean (Vigna radiata). Plant Mol Biol Rep 28:122–127

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2004) Iron. In: Vitamin and mineral requirements in human nutrition, 2nd edn. World Health Organization, Geneva, pp 246–272

    Google Scholar 

  • Xu J, Brearley CA, Lin WH, Wang Y, Ye R, Mueller-Roeber B, Xu ZH, Xue HW (2005) A role of Arabidopsis inositol polyphosphate kinase, AtIPK2α, in pollen germination and root growth. Plant Physiol 137:94–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Zhao H, Liu Q, Frank T, Engel K, An G, Shu Q (2009) Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119:75–83

    Article  CAS  PubMed  Google Scholar 

  • Yadhu S, Satvir K, Anil KG, Narinder K (2011) Levels of nutritional constituents and antinutritional factors in black gram (Vigna mungo L. Hepper). Food Res Int 44:621–628

    Article  CAS  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Zhao FJ, Ren HJ, Zhu XL, Fu SL, Shu XJ (2007) Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor Appl Genet 115:945–957

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Zhu D, Tan Y, Dong D, Fu X, Zhu S, Li B, Shu Q (2012) Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation. Theor Appl Genet 125:1413–1423

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q (2015) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J. https://doi.org/10.1111/pbi.12402

  • Zhang ZB, Yang G, Arana F, Chen Z, Li Y, Xia HJ (2007) Arabidopsis inositol polyphosphate 6−/3-kinase (AtIPK2β) is involved in axillary shoot branching via auxin signalling. Plant Physiol 144:942–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Corum JW III, Mullen J, Meeley RB, Helentjaris T, Martin D, Downie B (2006) An alkaline α-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Sci Res 16:107–121

    Article  CAS  Google Scholar 

  • Zhuo C, Wang T, Lu S, Zhao Y, Li X, Guo Z (2013) Cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol Plant 149:67–78

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Souframanien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Souframanien, J., Dhole, V.J., Reddy, K.S. (2021). Breeding for Low Phytates and Oligosaccharides in Mungbean and Blackgram. In: Gupta, D.S., Gupta, S., Kumar, J. (eds) Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-59215-8_5

Download citation

Publish with us

Policies and ethics