Skip to main content

Potential of Field Pea as a Nutritionally Rich Food Legume Crop

  • Chapter
  • First Online:
Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes

Abstract

Malnutrition is becoming a serious problem due to dearth of proteins, carbohydrates, vitamins, and macro and micronutrients in the daily diet of human beings mainly in developing countries. The micronutrient malnutrition in human body known as “hidden hunger” impelled loads of health-related problems including low birth weight, anaemia, learning disabilities, increased morbidity and death rates, poor work efficiency, and soaring healthcare expenses. Overall more than 2 billion people from developing countries suffer by micronutrient starvation, while worldwide more than 3 billion people are facing micronutrient deficiencies. In recent years, sincere efforts have been made to overcome the problems of malnutrition using different approaches like dietary supplementation, food fortification and biofortification. Biofortification of food crop with essential micronutrients is one of the best strategies to stride against micronutrient deficiencies through conventional plant breeding and modern genomics and agronomical approaches. Among pulses, field pea is one of the crops targeted for biofortification and has long been recognized as a valuable and nutritious food crop for the human diet. Field pea is a very important, economic, and nutritive crop and is often regarded as “poor man’s meat” due to high protein, vitamin, minerals, and prebiotic carbohydrate content, and it has enormous genetic variability for these traits in existing germplasm stock. More specifically, field pea is naturally rich in iron, zinc, and Se; consequently, could be used to address most of the common micronutrient deficiencies in the world. Therefore, field pea crop has been recognized a candidate crop for micronutrient biofortification and a potential complete food solution to the global micronutrient malnutrition. Therefore, in the present chapter, efforts have been made to present the current progress made in field pea for nutritional enrichment using different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allred CD, Allred KF, Ju YH, Goeppinger TS, Doerge DR, Helferich WG (2004) Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis 25(9):1649–1657. https://doi.org/10.1093/carcin/bgh178

    Article  CAS  PubMed  Google Scholar 

  • Aluko RE, Mofolasayo OA, Watts BM (2009) Emulsifying and foaming properties of commercial yellow pea (Pisum Sativum L.) seed flours. J Agric Food Chem 57:9793–9800

    Article  CAS  PubMed  Google Scholar 

  • Alves-Rodrigues A, Shao A (2004) The science behind lutein. Toxicol Lett 150:57–83. https://doi.org/10.1016/j.toxlet.2003.10.031

    Article  CAS  PubMed  Google Scholar 

  • Amarakoon D, McPhee K, Thavarajah P (2012) Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: a potential food-based solution to global micronutrient malnutrition. J Food Compos Anal 27(1):8–13

    Article  CAS  Google Scholar 

  • Amarakoon D, Gupta DS, McPhee K, DeSutter T, Thavarajah P (2015) Genetic and environmental variation of seed iron and food matrix factors of North-Dakota-grown field peas (Pisum sativum L.). J Food Compos Anal 37:67–74

    Article  Google Scholar 

  • Andersson M, Thankachan P, Muthayya S, Goud RB, Kurpad AV, Hurrell RF, Zimmermann MB (2008) Dual fortification of salt with iodine and iron: a randomized, double-blind, controlled trail of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India. Am J Clin Nutr 88:1378–1387

    CAS  PubMed  Google Scholar 

  • Arthur JR (2003) Selenium supplementation: does soil supplementation help and why? Proc Nutr Soc 62:393–397. https://doi.org/10.1079/PNS2003254

    Article  CAS  PubMed  Google Scholar 

  • Ashokkumar K, Tar’an B, Diapari M, Arganosa G, Warkentin TD (2014) Effect of cultivar and environment on carotenoid profile of pea and chickpea. Crop Sci 54:2225–2235

    Article  CAS  Google Scholar 

  • Ashokkumar K, Diapari M, Jha AB, Tar’an B, Arganosa G, Warkentin TD (2015) Genetic diversity of nutritionally important carotenoids in 94 pea and 121 chickpea accessions. J Food Compos Anal 43:49–60

    Article  CAS  Google Scholar 

  • Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66:2233

    Article  CAS  Google Scholar 

  • Bangar P, Glahn RP, Liu Y, Arganosa GC, Whiting S, Warkentin TD (2017) Iron bioavailability in field pea seeds: correlations with iron, phytate, and carotenoids. Crop Sci 57(2):891–902

    Article  CAS  Google Scholar 

  • Batra J, Seth PK (2002) Effect of iron deficiency on developing rat brain. Indian J Clin Biochem 17(2):108–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatty RS, Christison GI (1984) Composition and nutritional quality of pea (Pisum sativum L.), faba bean (Vicia faba L. spp. minor) and lentil (Lens culinaris Medik.) meals, protein concentrates and isolates. Plant Foods Hum Nutr 34(1):41–51

    Article  CAS  Google Scholar 

  • Bing DJ (2015) Breeding field pea cultivars with improved protein content. In: Eucarpia international symposium on protein crops, Pontevedra, 5–7 Apr, Abstracts pp 31–32

    Google Scholar 

  • Bing DJ, Liu Q (2011) Investigation of relationships of yield, seed size, seed protein and starch content and development of varieties with improved protein content of field pea (Pisum sativum L.). Can J Plant Sci 91:381

    Google Scholar 

  • Bishnoi S, Khetarpaul N, Yadav RK (1994) Effect of domestic processing and cooking methods on phytic acid and polyphenol contents of pea cultivars (Pisum sativum). Plant Foods Hum Nutr 45:381–388

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Talukder G, Sharma A (1999) Prevention of cytotoxic effects of arsenic by short-term dietary supplementation with selenium in mice in vivo. Mutat Res/Genet Toxicol Environ Mutagen 441(1):155–160

    Article  CAS  Google Scholar 

  • Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Article  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Rengifo J, Beebe SE, Graham R (2011) QTL for seed iron and zinc concentrations in a recombinant inbred line population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–521

    Article  CAS  PubMed  Google Scholar 

  • Blancquaert D, Storozhenko S, Van Daele J, Stove C, Visser R, Lambert W, Van Der Straeten D (2013) Enhancing pterin and paraaminobenzoate content is not su_cient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate. J Exp Bot 64:3899–3909

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2014) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet. https://doi.org/10.1007/s13353-014-0268-z

  • Borg S, Brinch-Pedersen H, Tauris B, Holm PB (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil 325:15–24

    Article  CAS  Google Scholar 

  • Bouis HE (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494S

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403e411

    Article  Google Scholar 

  • Bouis HE, Welch RM (2009) Biofortification-A sustainable agricultural strategy for reducing micronutrient in global south. Crop Sci 50:S20–S32

    Article  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification: a sustainable agricultural strategy for reducing micronutrient in the global south. Crop Sci 50:S20–S32. https://doi.org/10.2135/cropsci2009.09.0531

    Article  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:31S–40S

    Article  Google Scholar 

  • Bourgeois M, Jacquin F, Casseculle F et al (2011) A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 11:1581–1594

    Article  CAS  PubMed  Google Scholar 

  • Boye J, Zare F, Pletch A (2011) Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Res Int 43:414–431

    Article  CAS  Google Scholar 

  • Bramley PM (2000) Is lycopene beneficial to human health? Phytochemistry 54:233–236. https://doi.org/10.1016/S0031-9422(00)00103-5

    Article  CAS  PubMed  Google Scholar 

  • Brand TS, Brandt DA, Cruywagen CW (2004) Chemical composition, true metabolisable energy content and amino acid availability of grain legumes for poultry. South Afr J Animal Sci 34(2):116–122

    CAS  Google Scholar 

  • Brigide P, Canniatti-Brazaca SG, Silva MO (2014) Nutritional characteristics of biofortified common beans. Food Sci Technol 34:493–500. https://doi.org/10.1590/1678-457x.6245

    Article  Google Scholar 

  • Burstin J, Marget P, Huart M et al (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144:768–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc: agronomic or genetic biofortification. Cereal Chem 87:1–17

    Article  CAS  Google Scholar 

  • Campos-Vega R, Loarca-Piña G, Oomah BD (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43(2):461–482

    Article  CAS  Google Scholar 

  • Chad BG, John PS, Alan JS, Randal KT, Curtis RT, Ronald JG (2003) Correcting iron deficiency in corn with seed row–applied iron sulfate. Agron J 95:160–166

    Article  Google Scholar 

  • Champ MMJ (2002) Non-nutrient bioactive substances of pulses. Br J Nutr 88(S3):307–319

    Article  CAS  Google Scholar 

  • Cheng P, Holdsworth W, Ma Y, Coyne CJ, Mazourek M, Grusak MA, Fuchs S, McGee RJ (2015) Association mapping of agronomic and quality traits in USDA pea single-plant collection. Mol Breed 35(2):1–13

    Article  Google Scholar 

  • Chung KT, Wei CI, Johnson MG (1998) Are tannins a double edged sword in biology and health? Trends Food Sci Technol 9:168–175

    Article  CAS  Google Scholar 

  • Chung H-J, Liu Q, Hoover R et al (2008a) In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chem 111:316–321

    Article  CAS  PubMed  Google Scholar 

  • Chung H-J, Liu Q, Donner E et al (2008b) Composition, molecular structure, properties and in vitro digestibility of starches from newly released Canadian pulse cultivars. Cereal Chem 85:471–479

    Article  CAS  Google Scholar 

  • Chung HJ, Liu Q, Hoover R (2009) Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr Polym 75(3):436–447

    Article  CAS  Google Scholar 

  • Chung HJ, Liu Q, Hoover R (2010) Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Food Res Int 43(2):501–508

    Article  CAS  Google Scholar 

  • Clemente A, Arques MC, Dalmais M et al (2015) Eliminating antinutritional plant food proteins: the case of seed protease inhibitors in pea. PLoS ONE 10:e0134634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coon CN, Leske KL, Akavanichan O, Cheng TK (1990) Effect of oligosaccharide-free soybean meal on true metabolizable energy and fiber digestion in adult roosters. Poult Sci 69(5):787–793

    Article  CAS  PubMed  Google Scholar 

  • Cummings JH, Englyst HN (1995) Gastrointestinal effects of food carbohydrate. Am J Clin Nutr 61(4):938S–945S

    Article  CAS  PubMed  Google Scholar 

  • Curl CL, Price KR, Fenwick GR (1985) The quantitativeestimation of saponin in pea (Pisum-sativum L.) andsoya (glycine-max). Food Chem 18:241–250

    Article  CAS  Google Scholar 

  • Dahl WJ, Foster LM, Tyler RT (2012) Review of the health benefits of peas (Pisum sativum L.). Br J Nutr 108(S1):S3–S10

    Article  CAS  PubMed  Google Scholar 

  • Dang J, Arcot J, Shrestha A (2000) Folate retention in selected processed legumes. Food Chem 68:295–298

    Article  CAS  Google Scholar 

  • Delgerjav O (2012) Genotype by environment analysis of the performance of the two low phytate pea lines. M.S. thesis, University of Saskatchewan, Saskatoon

    Google Scholar 

  • Demirbas A (2018) Micro and macronutrients diversity in Turkish pea (Pisum sativum) germplasm. Int J Agric Biol 20(4):701–710

    CAS  Google Scholar 

  • Depar N, Rajpar I, Memon MY, Imtiaz M, Hassan Z (2011) Micronutrient nutrient densities in some domestic and exotic rice genotypes. Pak J Agri Agril Engg Vet Sc 27:134–142

    Google Scholar 

  • Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and market-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35:30–42. https://doi.org/10.1007/s11032-015-0252-2

    Article  Google Scholar 

  • Duenas M, Estrella I, Hernandez T (2004) Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur Food Res Technol 219:116–123

    Article  CAS  Google Scholar 

  • Duhan A (2002) Changes in phytates and HCl extractability of calcium, phosphorus, and iron of soaked, dehulled, cooked, and sprouted pigeon pea cultivar (UPAS-120). Plant Foods Hum Nutr 57:275–284. https://doi.org/10.1023/A:1021814919592

    Article  CAS  PubMed  Google Scholar 

  • Elmadfa I (2009) The European nutrition and health report. Forum of Nutrition, Vienna

    Google Scholar 

  • Enneking D, Wink M (2000) Towards the elimination of anti-nutritional factors in grain legumes. In: Linking research and marketing opportunities for pulses in the 21st century. Springer, Dordrecht, pp 671–683

    Chapter  Google Scholar 

  • Eyaru R, Shrestha AK, Arcot J (2009) Effect of various processing techniques on digestibility of starch in Red kidney bean (Phaseolus vulgaris) and two varieties of peas (Pisum sativum). Food Res Int 42(8):956–962

    Article  CAS  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383. https://doi.org/10.1089/ars.2010.3275

    Article  CAS  PubMed  Google Scholar 

  • FAO (2019) Food and agriculture organization statistics. http://www.fao.org/faostat/en/#data/QC

  • FAOSTAT (2007). http://faostat@fao.org/

    Google Scholar 

  • Fernando WMU, Hill JE, Zello GA et al (2010) Diets supplemented with chickpea or its main oligosaccharide component raffinose modify fecal microbial composition in healthy adults. Benefic Microbes 1:197–207

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (2011) FAO Statisitics. Food Security Data and Definitions 2005–2007. Food Deprivation. Number of Undernourished Persons. http://www.fao.org/economic/ess/ess-fs/fs-data/ess-fadata/en/. Accessed June 2011

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Essentials of medical geology. Springer, Dordrecht, pp 375–416

    Chapter  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80(7):861–879

    Article  CAS  Google Scholar 

  • Gali KK, Liu Y, Sindhu A et al (2018) Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol 18:172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg M, Sharma N, Sharma S et al (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gawalko E, Garrett RG, Warkentin T, Wang N, Richter A (2009) Trace elements in Canadian field peas: a grain safety assurance perspective. Food Addit Contam A 26:1002–1012

    Article  CAS  Google Scholar 

  • Gawłowska M, Święcicki W, Lahuta L, Kaczmarek Z (2017) Raffinose family oligosaccharides in seeds of Pisum wild taxa, type lines for seed genes, domesticated and advanced breeding materials. Genet Resour Crop Evol 64(3):569–578

    Article  CAS  Google Scholar 

  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Coronado F, Poblaciones MJ, Almeida AS, Cakmak I (2016) Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 401:331–346. https://doi.org/10.1007/s11104-015-2758-0

    Article  CAS  Google Scholar 

  • Gomez-Galera S, Rojas E, Sudhakar D, Zhu CF, Pelacho AM, Capell T et al (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180. https://doi.org/10.1007/s11248-009-9311-y

    Article  CAS  PubMed  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Grusak M (2002) Enhancing mineral content in plant food products. J Am Coll Nutr 21:178S–183S

    Article  PubMed  Google Scholar 

  • Grusak MA, Cakmak I (2005) Methods to improve the crop-delivery of minerals to humans and livestock. In: Broadley MR, White PJ (Eds.), Plant Nutritional Genomics. Blackwell Publishing, Oxford, pp 265–286

    Google Scholar 

  • Guillon F, Champ MJ (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr 88(S3):293–306

    Article  CAS  Google Scholar 

  • Gupta UC (1991) Iron status of crops in Prince Edward Island and effect of soil pH on plant iron concentration. Can J Soil Sci 71:197–202

    Article  CAS  Google Scholar 

  • Gupta DS, Thavarajah D, Knutson P, Thavarajah P, McGee RJ, Coyne CJ, Kumar S (2013) Lentils (Lens culinaris L.) a rich source of folates. J Agric Food Chem 61:7794–7799

    Article  PubMed  CAS  Google Scholar 

  • Haas JH, Miller DD (2006) Overview of experimental biology 2005 symposium: food fortification in developing countries. Am Soc Nutr J Nutr 136:1053–1054

    CAS  Google Scholar 

  • Hagerman AE, Riedl KM, Jones A et al (1998) Highmolecular weight plant polyphenolics (tannins) asantioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Tyler RT (2003) Determination of folate concentrations in pulses by a microbiological method employing trienzyme extraction. J Agric Food Chem 51:5315–5318

    Article  CAS  PubMed  Google Scholar 

  • Harmankaya M, Özcan MM, Karadaş S, Ceyhan E (2010) Protein and mineral contents of pea (Pisum sativum L.) genotypes grown in Central Anatolian region of Turkey. South West J Hortic Biol Environ 1(2):159–165

    Google Scholar 

  • Harris D, Rashid A, Miraj G et al (2007) ‘On–farm’ seed priming with zinc sulphate solution–A cost–effective way to increase the maize yields of resource–poor farmers. Field Crop Res 102(2):119–127

    Article  Google Scholar 

  • Hart JJ, Tako E, Kochian LV, Glahn RP (2015) Identification of Black Bean (Phaseolus vulgaris L.) Polyphenols that Inhibit and Promote Iron Uptake by Caco-2 Cells. J Agric Food Chem 63:5950–5956

    Article  CAS  PubMed  Google Scholar 

  • HarvestPlus (2014) Biofortification progress briefs: iron and zinc lentils. Brief 9, p 19. Available online at www.HarvestPlus.org

  • Hedges LJ, Lister CE (2006) The nutritional attributes of legumes. Crop Food Res Confidential Rep 1745:50

    Google Scholar 

  • Hefferon K (2019) Biotechnological approaches for generating zinc-enriched crops to combat malnutrition. Nutrients 11(2):253

    Article  CAS  PubMed Central  Google Scholar 

  • Hefni M, Öhrvik V, Tabekha M, Witthöft C (2010) Folate content in foods commonly consumed in Egypt. Food Chem 121(2):540–545

    Article  CAS  Google Scholar 

  • Holasová M, Dostálova R, Fieldlerová V, Horáček J (2009) Variability of lutein content in peas (Pisum sativum L.) in relation to the variety, season and chlorophyll content. Czech J Food Sci 27:S188–S191

    Article  Google Scholar 

  • Holmberg RE Jr, Ferm VH (1969) (1969) Interrelationships of selenium, cadmium, and arsenic in mammalian teratogenesis. Arch Environ Health Int J 18(6):873–877

    Article  CAS  Google Scholar 

  • Hood-Niefer SD, Warkentin TD, Chibbar RN, Vandenberg A, Tyler RT (2012) Effect of genotype and environment on the concentrations of starch in, and protein and the physicochemical properties of starch from, field pea and fababean. J Sci Food Agric 92(1):141–150. https://doi.org/10.1002/jsfa.4552

    Article  CAS  PubMed  Google Scholar 

  • Hoover R, Hughes T, Chung HJ et al (2010) Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43:399–413

    Article  CAS  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S94–S204

    Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S–1467S

    Article  CAS  PubMed  Google Scholar 

  • Irzykowska L, Wolko B (2004) Interval mapping of QTLs controlling yield-related traits and seed protein content in Pisum sativum. J Appl Genet 45:297–306

    PubMed  Google Scholar 

  • Jha AB, Warkentin TD (2020) Biofortification of pulse crops: Status and future perspectives. Plants 9(1):73

    Article  CAS  PubMed Central  Google Scholar 

  • Jha AB, Ashokkumar K, Diapari M et al (2015) Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. J Food Compos Anal 42:134–140

    Article  CAS  Google Scholar 

  • Jones DA, Dupont MS, Ambrose MJ, Frias J, Hedley CL (1999) The discovery of compositional variation for the raffinose family of oligosaccharides in pea seeds. Seed Sci Res 9(04):305–310

    Article  CAS  Google Scholar 

  • Kabir AH, Paltridge N, Stangoulis J (2016) Chlorosis correction and agronomic biofortification in field peas through foliar application of iron fertilizers under Fe deficiency. J Plant Interact 11(1):1–4

    Article  CAS  Google Scholar 

  • Kalač P, Míka V (1997) Přirozené škodlivé látky v ros-tlinných krmivech. 1. vydání. Praha, ÚZPI, 317pp

    Google Scholar 

  • Katz SH, Weaver WW (2003) Encyclopedia of food and culture. Scribner

    Google Scholar 

  • Khamparia RS, Singh MV, Sharma BL, Kulhare PS, Sharma GD (2010) Research publication No. 9, AICRP micro and secondary nutrients and pollutant elements in soil and plants. Indian Inst Soil Sci Bhopal Madhya Pradesh 6:1–113

    Google Scholar 

  • Khattab RY, Arntfield SD (2009a) Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT-Food Sci Technol 42(6):1113–1118

    Article  CAS  Google Scholar 

  • Khattab RY, Arntfield SD (2009b) Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. Lebensm Wiss Technol 42(6):1113–1118

    Article  CAS  Google Scholar 

  • Kneen BE, Larue TA, Welch RM et al (1990) Pleiotropic effects of brz: a mutation in Pisum sativum (L) cv. ‘Sparkle’ conditioning decreased nodulation and increased iron uptake and leaf necrosis. Plant Physiol 93:717–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183(3):323–336

    Article  CAS  Google Scholar 

  • Krinsky NI, Russett MD, Handelman GJ, Snodderly DM (1990) Structural and geometric isomers of carotenoids in human plasma. J Nutr 120:1654–1662

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Pandey G (2020) Biofortification of pulses and legumes to enhance nutrition. Heliyon 6(3):e03682

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Gupta DS, Kumar S, Gupta S, Singh NP (2016) Current knowledge on genetic biofortification in lentil. J Agric Food Chem 64(33):6383–6396

    Article  CAS  PubMed  Google Scholar 

  • Kwon S-J, Brown A, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaughan G, Grusak M, McPhee K, Coyne C (2012) Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Genes Genom 34(3):305–320

    Article  CAS  Google Scholar 

  • Lam ACY, Karaca AC, Tyler RT, Nickerson MT (2018) Pea protein isolates: structure, extraction and functionality. Food Rev Int 34(2):126–147. https://doi.org/10.1080/87559129.2016.1242135

    Article  CAS  Google Scholar 

  • Larson SR, Young KA, Cook A, Blake TK, Raboy V (1998) Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor Appl Genet 97:141–146. https://doi.org/10.1007/s001220050878

    Article  CAS  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid mutation. Crop Sci 40:1397–1405

    Article  CAS  Google Scholar 

  • Larsson M, Sandberg AS (1992) Phytate reduction in oats during malting. J Food Sci 57:994–997. https://doi.org/10.1111/j.1365-2621.1992.tb14340.x

    Article  CAS  Google Scholar 

  • Li H, Lian C, Zhang Z et al (2017) Agro-biofortification of iron and zinc in edible portion of crops for the global south. Adv Plants Agric Res 6(2):52–54. https://doi.org/10.15406/apar.2017.06.00210

    Article  Google Scholar 

  • Liljeberg Elmståhl H (2002) Resistant starch content in a selection of starchy foods on the Swedish market. Eur J Clin Nutr 56(6):500–505

    Article  PubMed  Google Scholar 

  • Liu ZH, Cheng FM, Cheng WD, Zhang GP (2005) Positional variations in phytic acid and protein content within a panicle of japonica rice. J Cereal Sci 41(3):297–303

    Article  CAS  Google Scholar 

  • Liu X, Glahn RP, Arganosa GC et al (2015) Iron bioavailability in low Phytate Pea. Crop Sci 55:320

    Article  CAS  Google Scholar 

  • Lockyer S, White A, Buttriss JL (2018) Biofortified crops for tackling micronutrient deficiencies – what impact are these having in developing countries and could they be of relevance within Europe? Nutr Bull 43:319–357

    Article  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet Nayel ML, Aubert G et al (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031. https://doi.org/10.1007/s00122-005-0014-3

    Article  CAS  PubMed  Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant Soil 269:369–380

    Article  CAS  Google Scholar 

  • Ma Z, Boye JI, Simpson BK, Prasher SO, Monpetit D, Malcolmson L (2011) Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Res Int 44(8):2534–2544

    Article  CAS  Google Scholar 

  • Ma Z, Boye JI, Azarnia S, Simpson BK (2015) Volatile flavour profile of Saskatchewan grown pulses as affected by different thermal processing treatments. Int J Food Prop 19(10):1–21

    Google Scholar 

  • Ma Y, Coyne CJ, Grusak MA, Mazourek M, Cheng P, Main D, McGee RJ (2017) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17(1):43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martens LG, Nilsen MM, Provan F (2017) Pea hull fibre: novel and sustainable fibre with important health and functional properties. EC Nutr 10:139–148

    Google Scholar 

  • Masuthi DA, Vyakaranahal BS, Deshpande VK (2009) Influence of pelleting with micronutrients and botanical on growth, seed yield and quality of vegetable cowpea. Karnataka J Agric Sci 22:898–900

    Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11(2):166–170

    Article  CAS  PubMed  Google Scholar 

  • Meydani M, Martin A, Ribaya Mercado JD, Gong J, Blumberrg JB, Russel RM (1994) Beta-carotene supplementation increases antioxidant capacity of plasma in older women. J Nutr 124:2397–2403

    Article  CAS  PubMed  Google Scholar 

  • Moeller SM, Jacques PF, Blumberg JB (2000) The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr 19:522S–527S. https://doi.org/10.1080/07315724.2000.10718975

    Article  CAS  PubMed  Google Scholar 

  • Monsen ER, Hallberg L, Layrisse M, Hegsted DM, Cook JD, Mertz W, Finch CA (1978) Estimation of available dietary iron. Am J Clin Nutr 31:134–141

    Article  CAS  PubMed  Google Scholar 

  • Moore KL, Rodríguez-Ramiro I, Jones ER et al (2018) The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Sci Rep 8:6865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami T, Kohno K, Matsuda H, Yoshikawa M (2001) Medicinal foodstuffs. XXII. Structures of oleanane-type triterpene oligoglycosides, pisumsaponins I and II, and kaurane-type diterpene oligoglycosides, pisumosides A and B, from green peas, the immatureseeds of Pisum sativumL. Chem Pharm Bull 49(1):73–77

    Article  CAS  Google Scholar 

  • Murcia MA, Rincon F (1991) Fatty acid composition of pea (Pisum sativum L., var. Citrina) during seed growth. Grasas Aceites 42(6):444–449

    Article  CAS  Google Scholar 

  • Muzquiz M, Varela A, Burbano C, Cuadrado C, Guillamón E, Pedrosa M (2012) Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem Rev 11(2–3):227–244

    Article  CAS  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136(4):1064–1067

    Article  CAS  PubMed  Google Scholar 

  • Ning W, Daun JK, Malcolmson LJ (2003) Relationship between physicochemical and cooking properties, and effects of cooking on antinutrients, of yellow field peas (Pisum sativum). J Sci Food Agric 83(12):1228–1237

    Article  CAS  Google Scholar 

  • Olmedilla B, Granado F, Blanco I, Vaquero M, Cajigal C (2001) Lutein in patients with cataracts and age-related macular degeneration: a long-term supplementation study. J Sci Food Agric 81:904–909. https://doi.org/10.1002/jsfa.905

    Article  CAS  Google Scholar 

  • Owusu-Ansah YJ, McCurdy SM (1991) Pea proteins: a review of chemistry, technology of production, and utilization. Food Rev Int 7(1):103–134

    Article  CAS  Google Scholar 

  • Parihar AK, Bohra A, Dixit GP (2016) Nutritional benefits of winter pulses with special emphasis on Peas and Rajmash. In: Biofortification of food crops. Springer, New Delhi, pp 61–71

    Google Scholar 

  • Patel GJ, Ramakrishnayya BV, Patel BK (2004) Effect of soil and foliar application of ferrous sulphate and of acidulation of soil on iron chlorosis of paddy seedlings ingoradu soil nurseries in India. Plant Soil 46:209–219

    Article  Google Scholar 

  • Pearson JN, Rengel Z (1995) Uptake and distribution of 65Zn and 54Mn in wheat grown in sufficient and deficient levels of Zn and Mn II. During grain development. J Exp Bot 46(7):841–845. https://doi.org/10.1093/jxb/46.7.841

    Article  CAS  Google Scholar 

  • Peterbauer T, Mach L, Mucha J et al (2002) Functional expression of a cDNA encoding pea (Pisum sativum L.) raffinose synthase, partial purification of the enzyme from maturing seeds, and steady-state kinetic analysis of raffinose synthesis. Planta 215:839–846

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Zeder C, Walczyk T, Hurrell R (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140:1977–1982. https://doi.org/10.3945/jn.110.125369

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S88–S105

    Article  Google Scholar 

  • Poblaciones MJ, Rengel Z (2016) Soil and foliar zinc biofortification in field pea (Pisum sativum L.): grain accumulation and bioavailability in raw and cooked grains. Food Chem 212:427–433. https://doi.org/10.1016/j.foodchem.2016.05.189

    Article  CAS  PubMed  Google Scholar 

  • Poblaciones MJ, Rengel Z (2017) Combined foliar selenium and zinc biofortification in field pea (Pisum sativum): accumulation and bioavailability in raw and cooked grains. Crop Pasture Sci 68(3):265–271

    Article  CAS  Google Scholar 

  • Poblaciones MJ, Rodrigo SM, Santamaria O (2013) Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biol Trace Elem Res 151:132–137. https://doi.org/10.1007/s12011-012-9539-x

    Article  CAS  PubMed  Google Scholar 

  • Poblaciones MJ, Santamaria O, Garcia-White T, Rodrigo SM (2014a) Selenium biofortification in bread-making wheat under Mediterranean conditions: Influence on grain yield and quality parameters. Crop Pasture Sci 65:362–369. https://doi.org/10.1071/CP14061

    Article  CAS  Google Scholar 

  • Poblaciones MJ, Rodrigo S, Santamaría O, Chen Y, McGrath SP (2014b) Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions. J Sci Food Agric 94:1101–1106. https://doi.org/10.1002/jsfa.6372

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2014) Agronomic biofortification of cereal grains with iron and zinc. Adv Agron 125:55–91

    Article  Google Scholar 

  • Prentice AM, Gershwin ME, Schaible UE, Keusch GT, Victoria LG, Gordon JI (2008) New challenges in studying nutrition disease interactions in the developing world. J Clin Invest 118:1322–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J (2004) Microencapsulation of beta-carotene in pea protein wall system. Thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science, Department of Food Science, University of Manitoba, Winnipeg

    Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray H, Bett K, Tar'an B, Vandenberg A, Thavarajah D, Warkentin T (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54(4):1698–1708

    Article  Google Scholar 

  • Rehman AU, Shunmugam A, Arganosa G, Bett KE, Warkentin TD (2012) Inheritance of the low-phytate trait in pea. Crop Sci 52:1171–1175

    Article  CAS  Google Scholar 

  • Reichert RD, MacKenzie SL (1982) Composition of peas (Pisum sativum) varying widely in protein content. J Agric Food Chem 30:312–317

    Article  CAS  Google Scholar 

  • Reifen R (2002) Vitamin A as an anti-inflammatory agent. Proc Nutr Soc 3:397–400. https://doi.org/10.1079/PNS2002172

    Article  CAS  Google Scholar 

  • Reilly C (1996) Biological role of selenium. In: Selenium in food and health. Blackie, London

    Chapter  Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crop Res 60(1–2):27–40

    Article  Google Scholar 

  • Roy F, Boye JI, Simpson BK (2010) Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res Int 43:432–442

    Article  CAS  Google Scholar 

  • Sandberg AS (2002) Bioavailability of minerals in legumes. Br J Nutr 88(S3):281–285

    Article  CAS  Google Scholar 

  • Sandberg AS, Svanberg U (1991) Phytate hydrolysis by phytase in cereals: effects on in vitro estimation of iron availability. J Food Sci 56:1330–1333. https://doi.org/10.1111/j.1365-2621.1991.tb04765.x

    Article  CAS  Google Scholar 

  • Santos CS, Carbas B, Castanho A, Vasconcelos MW, Vaz Patto MC, Domoney C, Brites C (2019) Variation in pea (Pisum sativum L.) seed quality traits defined by physicochemical functional properties. Foods 8(11):570

    Article  CAS  PubMed Central  Google Scholar 

  • Sarker A, Agrawal SK (2015) Combating Micronutrient Malnutrition with Biofortified Lentils. Amman Jordan the International Center for Agriculture Research in the Dry Areas. The International Center for Agriculture Research in the Dry Areas

    Google Scholar 

  • Savage GP, Deo S (1989) The nutritional value of peas (Pisum sativum). A literature review. Nutr Abstr Rev (Ser A) 59:65–88

    Google Scholar 

  • Shen S, Hou HW, Ding CB, Bing DJ, Lu ZX (2016) Protein content correlates with starch morphology, composition and physicochemical properties in field peas. Can J Plant Sci 96(3):404–412

    Article  CAS  Google Scholar 

  • Shivay YS, Singh U, Prasad R, Kaur R (2016) Agronomic interventions for micronutrient biofortification of pulses. Indian J Agron 61(4th IAC Special Issue):S161–S172

    Google Scholar 

  • Shunmugam ASK, Liu X, Stonehouse R, Bett KE, Tar’an B, Warkentin TD (2015) Mapping of seed phytate concentration and iron bioavailability in pea recombinant inbred line population. Crop Sci 55:828–836. https://doi.org/10.2135/cropsci2014.08.0544

    Article  CAS  Google Scholar 

  • Sierra I, Vidal-Valverde C, Kozlowska H (1998) Effect of ripening stage on thiamin and riboflavin levels in lupin, pea and faba bean seeds. Zeitschrift für Lebensmitteluntersuchung und Forschung A 206:126–129

    Google Scholar 

  • Singh MV (2007) Efficiency of seed treatment for ameliorating zinc deficiency in crops. In: Proceedings of zinc crops: improving crop production and human health, Istanbul, 24–26 May 2007

    Google Scholar 

  • Singh J, Nadarajan N, Basu PS, Srivastava RP, Kumar L (2013) Pulses for Human Health and Nutrition, pp 1–35. Technical Bulletin No. 7/2013, Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Singh U, Praharaj CS, Chaturvedi SK, Bohra A (2016) Biofortification: introduction, approaches, limitations and challenges. In: Singh U et al (eds) Biofortification of food crops. Springer, New Delhi, pp 3–18. https://doi.org/10.1007/978-81-322-2716-8_1

    Chapter  Google Scholar 

  • Smrkolj P, Germ M, Kreft I, Stibilj V (2006) Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J Exp Bot 57(14):3595–3600

    Article  CAS  PubMed  Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NT, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P, McPhee KE (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2(2):74–115

    Article  Google Scholar 

  • Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62:1448S–1461S

    Article  CAS  PubMed  Google Scholar 

  • Sommer A, Čerešňáková Z, Frydrych Z, Králík O, Králíková Z, Krása A, Pajtáš M, Petrikovič P, Pozdíšek J, Šimek M, Třináctý J, Vencl B, Zeman L (1994) Potřeba živin a tabulky výživné hodnoty krmiv pro přežvýkavce. VÚVZ Pohořelice, 196pp

    Google Scholar 

  • Southgate DA (1995) Digestion and metabolism of sugars. Am J Clin Nutr 62(1 Suppl):203S–210S

    Article  CAS  PubMed  Google Scholar 

  • Spallholz JE, Mallory Boylan L, David Robertson J, Smith L, Rahman MM, Hook J, Rigdon R (2008) Selenium and arsenic content of agricultural soils from Bangladesh and Nepal. Toxicol Environ Chem 90(2):203–210

    Article  CAS  Google Scholar 

  • Stephens D, Jackson PL, Gutierrez Y (1996) Subclinical vitamin A deficiency: A potentially unrecognized problem in the United States. Pediatr Nurs 22:377–389

    CAS  PubMed  Google Scholar 

  • Stewart CP, Dewey KG, Ashoran P (2010) The undernutrition epidemic: an urgent health priority. Lancet 375:282

    Article  PubMed  Google Scholar 

  • Stoltzfus RJ (2011) Iron interventions for women and children in low-income countries. J Nutr 141:756S–762S

    Article  CAS  PubMed  Google Scholar 

  • Suarez FL, Springfield J, Furne JK, Lohrmann TT, Kerr PS, Levitt MD (1999) Gas production in human ingesting a soybean flour derived from beans naturally low in oligosaccharides. Am J Clin Nutr 69(1):135–139

    Article  CAS  PubMed  Google Scholar 

  • Tayeh N, Aubert G, Pilet Nayel ML, Lejeune Hénaut I, Warkentin TD, Burstin J (2015) Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci 6:1037. https://doi.org/10.3389/fpls.2015.01037

    Article  PubMed  PubMed Central  Google Scholar 

  • Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortifi cation of lentils ( Lens culinaris L.). J Agric Food Chem 56:10747–10753

    Article  CAS  PubMed  Google Scholar 

  • Thavarajah D, Warkentin T, Vandenberg A (2010) Natural enrichment of selenium in Saskatchewan field peas (Pisum sativum L.). Can J Plant Sci 90:383–389. https://doi.org/10.4141/CJPS09154

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M, Glahn RP, Combs Jr GF and Vandenberg A (2011) The potential of lentil (Lens culinaris L) as a whole food for increased selenium, iron and zinc intake: preliminary results from a 3 year study. Euphytica 180:123–128

    Google Scholar 

  • Thavarajah D, Thavarajah P, Vial E, Gebhardt M, Lacher C, Kumar S, Combs GF (2015) Will selenium increase lentil (LensculinarisMedik) yield and seedquality? Front Plant Sci 6:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Tömösközi S, Lásztity R, Haraszi R, Baticz O (2001) Isolation and study of the functional properties of pea proteins. Nahrung 45:399–401

    Article  PubMed  Google Scholar 

  • Tosh SM, Yada S (2010) Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res Int 43(2):450–460

    Article  CAS  Google Scholar 

  • Trinidad TP, Mallillin AC, Loyola AS et al (2010) The potential health benefits of legumes as a good source of dietary fibre. Br J Nutr 103:569–574

    Article  CAS  PubMed  Google Scholar 

  • Troszynska A, Ciska E (2002) Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity. Czech J Food Sci 20(1):15–22

    Article  CAS  Google Scholar 

  • Tulbek MC, Lam RSH, Wang YC, Asavajaru P, Lam A (2016) Pea: a sustainable vegetable protein crop. In: Nadathur SR, Wanasundara JPD, Scanlin L (eds) Sustainable protein sources. Academic, San Diego, pp 145–164

    Google Scholar 

  • Turakainen M (2007) Selenium and its effects on growth, yield and tuber quality in potato. Julkaisuja/Helsingin yliopisto, Soveltavan biologian laitos, 4 May 2007

    Google Scholar 

  • Tzitzikas EN, Vincken JP, de Groot J, Gruppen H, Visser RGF (2006) Genetic variation in pea seed globulin composition. J Agric Food Chem 54(2):425–433. https://doi.org/10.1021/jf0519008

    Article  CAS  PubMed  Google Scholar 

  • Umbreit J (2005) Iron deficiency: a concise review. Am J Hematol 78:225–231

    Article  CAS  PubMed  Google Scholar 

  • UNICEF (1990) First call for children. World declaration and 1990–2000 plan of action on the survival, protection and development of children. UNICEF, New York

    Google Scholar 

  • Urbano G, López-Jurado M, Aranda C, Vilchez A, Cabrera L, Porres JM, Aranda P (2006) Evaluation of zinc and magnesium bioavailability from pea (Pisum sativum, L.) sprouts. Effect of illumination and different germination periods. Int J Food Sci Technol 41(6):618–626

    Article  CAS  Google Scholar 

  • Vidal-Valverde C, Frias J, Hernández AM, Martín-Alvarez PJ, Sierra I, Rodríguez C, Blazquez I, Vicente G (2003) Assessment of Nutritional Compounds and Antinutritional Factors in Pea (Pisum Sativum) Seeds. J Sci Food Agric 83:298–306

    Article  CAS  Google Scholar 

  • Vijayakumari K, Sidduraju P, Pugalenthi M, Janardhanan K (1998) Effect of soaking and heat processing on the levels of antinutrients and digestible proteins in seeds of Vigna sinensis. Food Chem 111:132–138

    Google Scholar 

  • Wang N, Daun JK (2004) Effect of variety and crude protein content on nutrient and certain antinutrients in field peas (Pisum sativum). J Sci Food Agric 84:1021–1029

    Article  CAS  Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can weimprove the nutritional quality of legume seeds? Plant Physiol 131:886–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Hatcher DW, Gawalko EJ (2008) Effect of variety and processing of nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chem 111:132–138. https://doi.org/10.1016/j.foodchem.2008.03.047

    Article  CAS  Google Scholar 

  • Wang N, Hatcher DW, Toews R, Gawalko EJ (2009) Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). Lebensmittel-Wissenschaft +Technologie 42:842–848. https://doi.org/10.1016/j.lwt.2008.10.007

    Article  CAS  Google Scholar 

  • Wang N, Hatcher DW, Warkentin TD, Toews R (2010) Effect of cultivar and environment on physicochemical and cooking characteristics of field pea (Pisum sativum). Food Chem 118:109–115

    Article  CAS  Google Scholar 

  • Warkentin TD, Delgerjav O, Arganosa G, Rehman AU, Bett KE, Anbessa Y, Rossnagel B, Raboy V (2012) Development and Characterization of Low-Phytate Pea. Crop Sci 52:74–78

    Article  Google Scholar 

  • Welch RM (2003) Farming for nutritious foods: agricultural technologies for improved human health. IFA-FAO Agriculture Conference on Global food security and the role of sustainable fertilization, Rome, 26–28 Mar, pp 2–24

    Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60:1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214. https://doi.org/10.1023/A:1020668100330

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364. https://doi.org/10.1093/jxb/erh064

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (2005) Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J Trace Elem Med Biol 18:299–307. https://doi.org/10.1016/j.jtemb.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7(11):e505–e568

    Article  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven micronutrient elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • WHO (2009) The World Health Report. World Health Organization, Geneva

    Google Scholar 

  • Wiltgren AR, Booth AO, Kaur G, Cicerale S, Lacy KE, Thorpe MG, Keast RS, Riddell LJ (2015) Micronutrient supplement use and diet quality in university students. Nutrients 7:1094–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2005) Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation. WHO Technical Report Series no. 935. WHO, Geneva

    Google Scholar 

  • World Health Organization (WHO) (2012) The World Health Report. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization and Food and Agriculture Organization of the United Nations (2006) Guidelines on food fortification with micronutrients; Allen L, de Benoist B, Dary O, Hurrell R (eds). WHO, Geneva

    Google Scholar 

  • World Health Organization WHO (2008) Worldwide prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia; de Benoist B, McLean E, Egli I, Cogswell M (eds). World Health Organization Press, Geneva

    Google Scholar 

  • Xu BJ, Yuan SH, Chang SKC (2007) Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Sci 72:S167–S175

    Article  CAS  PubMed  Google Scholar 

  • Yang XE, Chen WR, Feng Y (2007) Improving human micronutrient nutrition through biofortification in the soilplant system: China as a case study. Environ Geochem Health 29:413–428

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MB, Hurrell R (2007) Nutritional iron deficiency. Lancet 370:511–520

    Article  CAS  PubMed  Google Scholar 

  • Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang ZH, Sohu V, Hassan M, Kaya Y, Onder O, Lungu O, Yaqub Mujahid M, Joshi AK, Zelenskiy Y, Zhang FS, Cakmak I (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119–130. https://doi.org/10.1007/s11104-012-1369-2

    Article  CAS  Google Scholar 

  • Zuo YM, Zhang FS, Li XL et al (2000) Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil 220(1):13–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parihar, A.K., Dixit, G.P., Singh, U., Singh, A.K., Kumar, N., Gupta, S. (2021). Potential of Field Pea as a Nutritionally Rich Food Legume Crop. In: Gupta, D.S., Gupta, S., Kumar, J. (eds) Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-59215-8_3

Download citation

Publish with us

Policies and ethics