Skip to main content

Treatment-Emergent Central Sleep Apnea

  • Chapter
  • First Online:
Complex Sleep Breathing Disorders

Abstract

Treatment-emergent central sleep apnea (TE-CSA) occurs when central sleep apneas and periodic breathing emerge with restoration of upper airway patency in individuals with obstructive sleep apnea (OSA). It is a non-rapid eye movement sleep process, driven by an overly sensitive ventilatory control system and sleep-wake instability superimposed on increased upper airway collapsibility. TE-CSA affects roughly 5–10% of OSA patients treated with continuous positive airway pressure (CPAP) and is associated with conditions that predispose to central sleep apnea including heart failure, atrial fibrillation, and opioid use. The trajectories of TE-CSA vary, with resolution occurring in about 50%, persistence in 25%, and late development (weeks after CPAP initiation) in another 25%. Since TE-CSA resolves in a majority, close observation on CPAP may be attempted. However, TE-CSA is associated with poor adherence and CPAP use termination with ongoing poor quality of life and symptoms. This can be addressed by tailoring therapy early with treatments such as adaptive servo-ventilation. Because of the multifactorial nature of TE-CSA pathogenesis, optimal treatment may require multi-modality therapy targeting ventilatory and sleep state instability, including oxygen, carbonic anhydrase inhibitors, or sedative hypnotics. Patient-oriented clinical research in treatment of TE-CSA is needed before such approaches can be incorporated into clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malhotra A, Bertisch S, Wellman A. Complex sleep apnea: it isn’t really a disease. J Clin Sleep Med. 2008;4:406–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morgenthaler TI, Kagramanov V, Hanak V, Decker PA. Complex sleep apnea syndrome: is it a unique clinical syndrome? Sleep. 2006;29:1203–9.

    Article  PubMed  Google Scholar 

  3. Liu D, Armitstead J, Benjafield A, et al. Trajectories of emergent central sleep apnea during CPAP therapy. Chest. 2017;152:751–60.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pepin JD, Woehrle H, Liu D, et al. Adherence to positive airway therapy after switching from CPAP to ASV: a big data analysis. J Clin Sleep Med. 2018;14:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zinchuk A, Thomas R. Central sleep apnea: diagnosis and management. In: Kryger M, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 6th ed. Philadelphia: Elsevier; 2017.

    Google Scholar 

  6. Dunai J, Kleiman J, Trinder J. Ventilatory instability during sleep onset in individuals with high peripheral chemosensitivity. J Appl Physiol. 1999;87:661–72.

    Article  CAS  PubMed  Google Scholar 

  7. Eckert DJ, Younes MK. Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment. J Appl Physiol. 2014;116:302–13.

    Article  CAS  PubMed  Google Scholar 

  8. Gilmartin G, McGeehan B, Weiss JW, Thomas RJ. Treatment of positive airway pressure treatment-associated respiratory instability with enhanced expiratory rebreathing space (EERS). J Clin Sleep Med. 2010;6:529–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Montesi SB, Bakker JP, Macdonald M, et al. Air leak during CPAP titration as a risk factor for central apnea. J Clin Sleep Med. 2013;9:1187–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoffman M, Schulman DA. The appearance of central sleep apnea after treatment of obstructive sleep apnea. Chest. 2012;142:517–22.

    Article  PubMed  Google Scholar 

  11. Thomas RJ, Daly RW, Weiss JW. Low-concentration carbon dioxide is an effective adjunct to positive airway pressure in the treatment of refractory mixed central and obstructive sleep-disordered breathing. Sleep. 2005;28:69–77.

    Article  PubMed  Google Scholar 

  12. American Academy of Sleep Medicine. International classification of sleep disorders. Darien: American Academy of Sleep Medicine; 2014.

    Google Scholar 

  13. Cassel W, Canisius S, Becker HF, et al. A prospective polysomnographic study on the evolution of complex sleep apnoea. Eur Respir J. 2011;38:329–37.

    Article  CAS  PubMed  Google Scholar 

  14. Javaheri S, Harris N, Howard J, Chung E. Adaptive servoventilation for treatment of opioid-associated central sleep apnea. J Clin Sleep Med. 2014;10:637–43.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Javaheri S, Smith J, Chung E. The prevalence and natural history of complex sleep apnea. J Clin Sleep Med. 2009;5:205–11.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nigam G, Pathak C, Riaz M. A systematic review on prevalence and risk factors associated with treatment- emergent central sleep apnea. Ann Thorac Med. 2016;11:202–10.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nigam G, Riaz M, Chang ET, Camacho M. Natural history of treatment-emergent central sleep apnea on positive airway pressure: a systematic review. Ann Thorac Med. 2018;13:86–91.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Allam JS, Olson EJ, Gay PC, Morgenthaler TI. Efficacy of adaptive servoventilation in treatment of complex and central sleep apnea syndromes. Chest. 2007;132:1839–46.

    Article  PubMed  Google Scholar 

  19. Kuzniar TJ, Kasibowska-Kuzniar K, Ray DW, Freedom T. Clinical heterogeneity of patients with complex sleep apnea syndrome. Sleep Breath. 2013;17:1209–14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuzniar TJ, Morgenthaler TI. Treatment of complex sleep apnea syndrome. Chest. 2012;142:1049–57.

    Article  PubMed  Google Scholar 

  21. Schwarzer A, Aichinger-Hinterhofer M, Maier C, Vollert J, Walther JW. Sleep-disordered breathing decreases after opioid withdrawal: results of a prospective controlled trial. Pain. 2015;156:2167–74.

    Article  CAS  PubMed  Google Scholar 

  22. Moro M, Gannon K, Lovell K, Merlino M, Mojica J, Bianchi MT. Clinical predictors of central sleep apnea evoked by positive airway pressure titration. Nat Sci Sleep. 2016;8:259–66.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reiter J, Zleik B, Bazalakova M, Mehta P, Thomas RJ. Residual events during use of CPAP: prevalence, predictors, and detection accuracy. J Clin Sleep Med. 2016;12:1153–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stanchina M, Robinson K, Corrao W, Donat W, Sands S, Malhotra A. Clinical use of loop gain measures to determine continuous positive airway pressure efficacy in patients with complex sleep apnea. A pilot study. Ann Am Thorac Soc. 2015;12:1351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sands SA, Edwards BA, Terrill PI, et al. Phenotyping pharyngeal pathophysiology using polysomnography in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2018;197:1187–97.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Edwards BA, Eckert DJ, McSharry DG, et al. Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2014;190:1293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pusalavidyasagar SS, Olson EJ, Gay PC, Morgenthaler TI. Treatment of complex sleep apnea syndrome: a retrospective comparative review. Sleep Med. 2006;7:474–9.

    Article  PubMed  Google Scholar 

  28. Salloum A, Rowley JA, Mateika JH, Chowdhuri S, Omran Q, Badr MS. Increased propensity for central apnea in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure. Am J Respir Crit Care Med. 2010;181:189–93.

    Article  PubMed  Google Scholar 

  29. Javaheri S, Brown LK, Randerath WJ. Clinical applications of adaptive servoventilation devices: part 2. Chest. 2014;146:858–68.

    Article  PubMed  Google Scholar 

  30. Javaheri S, Brown LK, Randerath WJ. Positive airway pressure therapy with adaptive servoventilation: part 1: operational algorithms. Chest. 2014;146:514–23.

    Article  PubMed  Google Scholar 

  31. Dellweg D, Kerl J, Hoehn E, Wenzel M, Koehler D. Randomized controlled trial of noninvasive positive pressure ventilation (NPPV) versus servoventilation in patients with CPAP-induced central sleep apnea (complex sleep apnea). Sleep. 2013;36:1163–71.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Morgenthaler TI, Kuzniar TJ, Wolfe LF, Willes L, McLain WC 3rd, Goldberg R. The complex sleep apnea resolution study: a prospective randomized controlled trial of continuous positive airway pressure versus adaptive servoventilation therapy. Sleep. 2014;37:927–34.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morgenthaler TI, Gay PC, Gordon N, Brown LK. Adaptive servoventilation versus noninvasive positive pressure ventilation for central, mixed, and complex sleep apnea syndromes. Sleep. 2007;30:468–75.

    Article  PubMed  Google Scholar 

  34. Bitter T, Westerheide N, Hossain MS, et al. Complex sleep apnoea in congestive heart failure. Thorax. 2011;66:402–7.

    Article  PubMed  Google Scholar 

  35. Heider K, Arzt M, Lerzer C, et al. Adaptive servo-ventilation and sleep quality in treatment emergent central sleep apnea and central sleep apnea in patients with heart disease and preserved ejection fraction. Clin Res Cardiol. 2018;107:421–9.

    Article  PubMed  Google Scholar 

  36. Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373:1095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gunn S, Naik S, Bianchi MT, Thomas RJ. Estimation of adaptive ventilation success and failure using polysomnogram and outpatient therapy biomarkers. Sleep. 2018;41:zsy033; e-pub Feb 23.

    Article  Google Scholar 

  38. Sakakibara M, Sakata Y, Usui K, et al. Effectiveness of short-term treatment with nocturnal oxygen therapy for central sleep apnea in patients with congestive heart failure. J Cardiol. 2005;46:53–61.

    PubMed  Google Scholar 

  39. Xie A, Teodorescu M, Pegelow DF, et al. Effects of stabilizing or increasing respiratory motor outputs on obstructive sleep apnea. J Appl Physiol. 2013;115:22–33.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Khayat RN, Xie A, Patel AK, Kaminski A, Skatrud JB. Cardiorespiratory effects of added dead space in patients with heart failure and central sleep apnea. Chest. 2003;123:1551–60.

    Article  PubMed  Google Scholar 

  41. Andreas S, Weidel K, Hagenah G, Heindl S. Treatment of Cheyne-Stokes respiration with nasal oxygen and carbon dioxide. Eur Respir J. 1998;12:414–9.

    Article  CAS  PubMed  Google Scholar 

  42. Edwards BA, Sands SA, Eckert DJ, et al. Acetazolamide improves loop gain but not the other physiological traits causing obstructive sleep apnoea. J Physiol. 2012;590:1199–211.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Javaheri S. Acetazolamide improves central sleep apnea in heart failure: a double-blind, prospective study. Am J Respir Crit Care Med. 2006;173:234–7.

    Article  CAS  PubMed  Google Scholar 

  44. Latshang TD, Nussbaumer-Ochsner Y, Henn RM, et al. Effect of acetazolamide and autoCPAP therapy on breathing disturbances among patients with obstructive sleep apnea syndrome who travel to altitude: a randomized controlled trial. JAMA. 2012;308:2390–8.

    Article  CAS  PubMed  Google Scholar 

  45. Eskandari D, Zou D, Grote L, Hoff E, Hedner J. Acetazolamide reduces blood pressure and sleep-disordered breathing in patients with hypertension and obstructive sleep apnea: a randomized controlled trial. J Clin Sleep Med. 2018;14:309–17.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Quadri S, Drake C, Hudgel DW. Improvement of idiopathic central sleep apnea with zolpidem. J Clin Sleep Med. 2009;5:122–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eckert DJ, Owens RL, Kehlmann GB, et al. Eszopiclone increases the respiratory arousal threshold and lowers the apnoea/hypopnoea index in obstructive sleep apnoea patients with a low arousal threshold. Clin Sci (Lond). 2011;120:505–14.

    Article  Google Scholar 

  48. Lettieri CJ, Quast TN, Eliasson AH, Andrada T. Eszopiclone improves overnight polysomnography and continuous positive airway pressure titration: a prospective, randomized, placebo-controlled trial. Sleep. 2008;31:1310–6.

    PubMed  PubMed Central  Google Scholar 

  49. Park JG, Olson EJ, Morgenthaler TI. Impact of zaleplon on continuous positive airway pressure therapy compliance. J Clin Sleep Med. 2013;9:439–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Zinchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zinchuk, A., Yaggi, H.K. (2021). Treatment-Emergent Central Sleep Apnea. In: Won, C. (eds) Complex Sleep Breathing Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-57942-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57942-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57941-8

  • Online ISBN: 978-3-030-57942-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics