Skip to main content

Nutritional Deficiencies and Hyperhomocysteinemia

  • Chapter
  • First Online:
Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia
  • 201 Accesses

Abstract

Homocysteine is a non-essential amino acid that is developed during the biosynthesis and metabolism of methionine. In methionine metabolic pathway, homocysteine either can be irreversibly degraded to cysteine via the trans-sulfuration pathway or re-methylated back to methionine [1]. Although homocysteine is not directly participating in protein synthesis, its role in folate metabolism and choline catabolism is vital to regulating methionine activity. Methionine is required for the synthesis of many types of proteins, in which its ability to donate methyl groups is essential for the synthesis of methylated compounds, while the inorganic sulfate is fundamental for the synthesis of sulfur-containing amino acids. Polyamines can be synthesized from carbon skeleton of methionine [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battezzati A, Bertoli S, San Romerio A, Testolin G (2007) Body composition: an important determinant of homocysteine and methionine concentrations in healthy individuals. Nutr Metab Cardiovasc Dis 17:525–534

    Article  CAS  PubMed  Google Scholar 

  2. Lentz SR, Haynes WG (2004) Homocysteine: is it a clinically important cardiovascular risk factor? Cleve Clin J Med 71(9):729–734

    Article  PubMed  Google Scholar 

  3. Tinelli C, Pino AD, Ficulle E, Marcelli S, Feligioni M (2019) Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr 6:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fowler B (2005) Homocysteine: overview of biochemistry, molecular biology, and role in disease processes. Semin Vasc Med 5:77–86

    Article  PubMed  Google Scholar 

  5. Yang J, Hu X, Zhang Q, Cao H, Wang J, Liu B (2012) Homocysteine level and risk of fracture: a meta-analysis and systematic review. Bone 51(3):376–382

    Article  CAS  PubMed  Google Scholar 

  6. Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN (2017) The metabolism and significance of homocysteine in nutrition and health. Nutr Metab 14:78

    Article  CAS  Google Scholar 

  7. Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I (2006) Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis 29:3–20

    Article  CAS  PubMed  Google Scholar 

  8. Curro M, Gugliandolo A, Gangemi C et al (2014) Toxic effects of mild elevated homocysteine concentrations in neuronal-like cells. Neurochem Res 30:1485–1495

    Article  CAS  Google Scholar 

  9. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S et al (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10:433–443

    Article  CAS  PubMed  Google Scholar 

  10. Joubert LM, Manore MM (2006) Exercise, nutrition, and homocysteine. Int J Sport Nutr Exerc Metab 16:341–361

    Article  CAS  PubMed  Google Scholar 

  11. Steed MM, Tyagi SC (2011) Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 15(7):1927–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sunder-Plassmann G, Winkelmayer WC, Fodinger M (2000) Therapeutic potential of total homocysteine-lowering drugs on cardiovascular disease. Expert Opin Investig Drugs 9(11):2637–2651

    Article  CAS  PubMed  Google Scholar 

  13. Hefni ME, Witthöft CM, Moazzami AA (2018) Plasma metabolite profiles in healthy women differ after intervention with supplemental folic acid v. folate-rich foods. J Nutr Sci 7:1–9

    Article  CAS  Google Scholar 

  14. World Health Organization (2012) Serum and red blood cell folate concentrations for assessing folate status in populations. Vitam Miner Nutr Inf Syst:1–7

    Google Scholar 

  15. Chew SC, Khor GL, Loh SP (2011) Association between dietary folate intake and blood status of folate and homocysteine in Malaysian adults. J Nutr Sci Vitaminol (Tokyo) 57(2):150–155

    Article  CAS  Google Scholar 

  16. Gibney M, Sandström B (2001) A framework for food-based dietary guidelines in the European Union. Public Health Nutr 4(2a):293–305

    Article  Google Scholar 

  17. Stover PJ (2004) Physiology of folate and vitamin B 12 in health and disease. Nutr Rev 62(suppl_1):3–12

    Article  Google Scholar 

  18. Verhoef P, de Groot LC (2005) Dietary determinants of plasma homocysteine concentrations. Semin Vasc Med 5(2):110–123

    Article  PubMed  Google Scholar 

  19. Hung J, Yang TL, Urrutia TF, Li R et al (2006) Additional food folate derived exclusively from natural sources improves folate status in young women with the MTHFR 677 CC or TT genotype. J Nutr Biochem 17(11):728–734

    Article  CAS  PubMed  Google Scholar 

  20. Flour Fortification Innitiative (FFI) Wheat Flour Fortification Status. Map of Global Progress (2016) Countries with mandatory wheat flour fortification regulations. FFI

    Google Scholar 

  21. Homocysteine Lowering Trialists’ Collaboration (1998) Lowering blood homocysteine with folic acid-based supplements: meta-analysis of randomized trials. BMJ 316:894–898

    Article  Google Scholar 

  22. Hoey L, McNulty H, Askin N, Dunne A, Ward M, Pentieva K et al (2007) Effect of a voluntary food fortification policy on folate, related B vitamin status, and homocysteine in healthy adults. Am J Clin Nutr 86:1405–1413

    Article  CAS  PubMed  Google Scholar 

  23. Appel LJ, Miller ER, Jee SH, Stolzenberg-Solomon R, Lin PH, Elinger T et al (2000) Effect of dietary patterns on serum homocysteine: results of a randomized, controlled feeding study. Circulation 102(8):852–857

    Article  CAS  PubMed  Google Scholar 

  24. Venn BJ, Mann JI, Williams SM, Riddell LJ, Chishlom A, Harper JM et al (2002) Dietary counseling to increase natural folate intake: a randomized, placebo-controlled trial in free-living subjects to assess effects on serum folate and plasma total homocysteine. Am J Clin Nutr 76(4):758–765

    Article  CAS  PubMed  Google Scholar 

  25. Faeh D, Chiolero A, Paccaud F (2006) Homocysteine as a risk factor for cardiovascular disease: should we (still) worry about it? Swiss Med Wkly 136:745–756

    CAS  PubMed  Google Scholar 

  26. Andrès E, Affenberger S, Vinzio S, kurtz EJ, Noel E, Kaltenbach G et al (2005) Food-cobalamin malabsorption in elderly patients: clinical manifestations and treatment. Am J Med 118:1154–1159

    Article  PubMed  CAS  Google Scholar 

  27. Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23:795–807

    Article  CAS  PubMed  Google Scholar 

  28. Konstantinova SV, Vollset SE, Berstad P, Ueland PM, Drevon CA, Refsum H et al (2007) Dietary predictors of plasma total homocysteine in the Hordaland homocysteine study. Br J Nutr 98(1):201–210

    Article  CAS  PubMed  Google Scholar 

  29. Ganji V, Kafai MR (2004) Frequent consumption of milk, yogurt, cold breakfast cereals, peppers, and cruciferous vegetables and intakes of dietary folate and riboflavin but not vitamins B-12 and B-6 are inversely associated with serum total homocysteine concentrations in the US population. Am J Clin Nutr 80(6):1500–1507

    Article  CAS  PubMed  Google Scholar 

  30. Gao X, Yao M, McCrory MA, Ma G, Li Y, Roberts SB et al (2003) Dietary pattern is associated with homocysteine and B vitamin status in urban Chinese population. J Nutr 133(11):3636–3642

    Article  CAS  PubMed  Google Scholar 

  31. Stea TH, Uglem S, Wandel M, Mansoor MA, Frolich W (2009) Association between folate intake from different food sources in Norway and homocysteine status in a dietary intervention among young male adults. Br J Nutr 102(6):899–906

    Article  CAS  PubMed  Google Scholar 

  32. Zeng Q, Li F, Xiang T, Wang W, Ma C, Yang C et al (2017) Influence of food groups on plasma total homocysteine for specific MTHFR C677T genotypes in Chinese population. Mol Nutr Food Res 61(2):1–8

    Article  CAS  Google Scholar 

  33. Selhub J, Troen AM (2016) Sulfur amino acids and atherosclerosis: a role for excess dietary methionine. Ann N Y Acad Sci 8

    Google Scholar 

  34. Krajcovicova-Kudlackova M, Blazicek P, Kopcova J, Bederova A, Babinska K (2000) Homocysteine levels in vegetarians versus omnivores. Ann Nutr Metab 44:135–138

    Google Scholar 

  35. Herrmann W, Schorr H, Obeid R, Geisel J (2003) Vitamin B12 status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am J Clin Nutr 78:131–136

    Article  CAS  PubMed  Google Scholar 

  36. Derose DJ, Charles-Marcel ZL, Jamison JM, Muscat JE, Braman MA, McLane GD et al (2000) Vegan diet-based lifestyle program rapidly lowers homocysteine levels. Prev Med 30:225–233

    Google Scholar 

  37. Investigators HOPE (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006:1567–1577

    Google Scholar 

  38. Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM (2002) Effect of homocysteine lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss heart study: a randomized controlled trial. JAMA 288:973–979

    Article  CAS  PubMed  Google Scholar 

  39. Dinckal MH, Aksoy N, Aksoy M, Davutoglu V, Soydinc S, Kirilmaz A et al (2003) Effect of homocysteine-lowering therapy on vascular endothelial function and exercise performance in coronary patients with hyperhomocysteinaemia. Acta Cardiol 58:389–396

    Article  PubMed  Google Scholar 

  40. Jalali F, Hajian-Tilaki KO (2007) Effect of folic acid on serum homocysteine and morbidity in patients with chronic coronary artery disease. Iranian Heart J 8(2):44–50

    Google Scholar 

  41. Nasrolahi S, Radnia N, Neghab N, Shafie A (2010) Effect of low-dose folic acid supplementation versus HRT and combination of folic acid and HRT on plasma level of homocysteine in postmenopausal women. Pak J Med Sci 26(2):310–313

    Google Scholar 

  42. El-Kadi MA, Farag AF (2013) The effect of folic acid supplementation on serum homocysteine of Egyptian postmenopausal women: a randomized controlled trial. Middle East Fertil Soci J 10(4):1–5

    Google Scholar 

  43. Baric I, Staufner C, Augoustides-Savvopouloup P, Chien YH, Dobbelaera D, Grunert SC et al (2017) J Inherit Metab Dis 40(1):5–20

    Article  CAS  PubMed  Google Scholar 

  44. Smith AD, Refsum H (2016) Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr 36:211–239

    Article  CAS  PubMed  Google Scholar 

  45. Mazza A, Ramazzino E, Cicero AF, Lenti S, Schiavon L, Casiglia E et al (2016) Nutraceutical approaches to homocysteine lowering in hypertensive subjects at low cardiovascular risk: a multicenter, randomized clinical trial. J Biol Regul Homeost Agents 30(3):921–927

    CAS  PubMed  Google Scholar 

  46. Gok U, Halifeoglu I, canatan H, Yildiz M, Gursu MF, Gur B (2004) Comparative analysis of serum homocysteine, folic acid and vitamin B12 levels in patients with noise-induced hearing loss. Auris Nasus Larynx 31(1):19–22

    Article  PubMed  Google Scholar 

  47. Steenge GR, Verhoef P, Katan MB (2003) Betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr 133:1291–1295

    Article  CAS  PubMed  Google Scholar 

  48. Cho E, Zeisel SH, Jacques P, Selhub J, Dougherty L, Colditz GA et al (2006) Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham offspring study. Am J Clin Nutr 83:905–911

    Article  CAS  PubMed  Google Scholar 

  49. Olthof MR, van Vliet T, Boelsma E, Verhoef P (2003) Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr 133:4135–4138

    Article  CAS  PubMed  Google Scholar 

  50. Barak AJ, Beckenhauer HC, Mailliard ME, Kharbanda KK, Tuma DJ (2003) Betaine lowers elevated S-adenosylhomocysteine levels in hepatocytes from ethanol-fed rats. J Nutr 133:2845–2848

    Article  CAS  PubMed  Google Scholar 

  51. Lee JE, Jacques PF, Dougherty L, Selhub J, Giovannucci E, Zeisel SH et al (2010) Are dietary choline and betaine intakes determinants of total homocysteine concentration? Am J Clin Nutr 91(5):1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lever M, George PM, Atkinson W, Molyneux SL, Elmslie JL, Slow S (2011) Plasma lipids and betaine are related in an acute coronary syndrome cohort. PLoS One 6(7):e21666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matthews A, Johnson TN, Rostami-Hodjegan A, Chakrapani A, Wraith JE, Moat SJ (2002) An indirect response model of homocysteine suppression by betaine: optimizing the dosage regimen of betaine in homocystinuria. Br J Clin Pharmacol 54(1):140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwab U, Alfthan G, Aro A, Uusitupa M (2011) Long-term effect of betaine on risk factors associated with the metabolic syndrome in healthy subjects. Eur J Clin Nutr 65(1):70–76

    Article  CAS  PubMed  Google Scholar 

  55. Atkinson W, Slow S, Elmslie J, Lever M, Chambers ST, George PM (2009) Dietary and supplementary betaine: effects on betaine and homocysteine concentrations in males. Nutr Metab Cardiovasc Dis 19(11):767–773

    Article  CAS  PubMed  Google Scholar 

  56. Alfthan G, Tapani K, Nissinen K, Saarela J, Aro A (2004) The effect of low doses of betaine on plasma homocysteine in healthy volunteers. Br J Nutr 92(4):665–669

    Article  CAS  PubMed  Google Scholar 

  57. Schwab U, Törrönen A, Meririnne E, Saarinen M, Alfthan G, Aro A et al (2006) Orally administered betaine has an acute and dose-dependent effect on serum betaine and plasma homocysteine concentrations in healthy humans. J Nutr 136(1):34–38

    Article  CAS  PubMed  Google Scholar 

  58. Atkinson W, Elmslie J, Lever M, Chambers ST, George PM (2008) Dietary and supplementary betaine: acute effects on plasma betaine and homocysteine concentrations under standard and postmethionine load conditions in healthy male subjects. Am J Clin Nutr 87(3):577–585

    Article  CAS  PubMed  Google Scholar 

  59. Yilmaz H, Sahin S, Sayar N, Tangurek B, Yilmaz M, Nurkalem Z et al (2007) Effects of folic acid and N-acetylcysteine on plasma homocysteine levels and endothelial function in patients with coronary artery disease. Acta Cardiol 62:579–585

    Article  PubMed  Google Scholar 

  60. Perna AF, Violetti E, Lanza D, Sepe I, Bellinghieri G, Savica V et al (2012) Therapy of hyperhomocysteinemia in hemodialysis patients: effects of folates and N-acetylcysteine. J Ren Nutr 22(5):507–514

    Article  CAS  PubMed  Google Scholar 

  61. Kasperczyk S, Dobrakowski M, Kasperczyk A, Romuk E, Czerwinska MK, Pawlas N et al Effect of N-acetylcysteine administration on homocysteine level, oxidative damage to proteins, and levels of iron (Fe) and Fe-related proteins in lead-exposed workers. Toxicol Ind Health 2015:1–12

    Google Scholar 

  62. Ventura P, Panini R, Abbati G, Marchatti G, Salvioli G (2003) Urinary and plasma homocysteine and cysteine levels during prolonged oral N-acetylcysteine therapy. Pharmacology 68(2):105–114

    Article  CAS  PubMed  Google Scholar 

  63. Yilmaz H, Sahin S, Sayar N, Tangurek B, Yilmaz M, Nurkalem Z (2007) Effects of folic acid and N-acetylcysteine on plasma homocysteine levels and endothelial function in patients with coronary artery disease. Acta Cardiol 62(6):579–585

    Article  PubMed  Google Scholar 

  64. Wang JH, Subeq YM, Tsai WC, Lee RP, Hsu BG (2008) Intravenous N-acetylcysteine with saline hydration improves renal function and ameliorates plasma total homocysteine in patients undergoing cardiac angiography. Ren Fail 30(5):527–533

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, S.A.E.M. (2021). Nutritional Deficiencies and Hyperhomocysteinemia. In: Waly, M.I. (eds) Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia. Springer, Cham. https://doi.org/10.1007/978-3-030-57839-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57839-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57838-1

  • Online ISBN: 978-3-030-57839-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics