Skip to main content

The Hydrothermal Minerals

  • Chapter
  • First Online:
A Thermodynamic Approach to Water Geothermometry

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

Over 2200 chemical analyses of hydrothermal minerals collected at depth in different active geothermal systems were compiled and processed in this work. In agreement with the outcomes of previous studies, it turned out that hydrothermal quartz, calcite, adularia, albite, anorthite, and laumontite are virtually pure solid phases. Therefore, their activities can be assumed to be equal to one. In contrast, the other hydrothermal minerals of interest, i.e., white mica, chlorite, epidote, prehnite, wairakite, and garnet, are solid solutions of variable composition. Therefore, the activities of pertinent endmembers (i.e., muscovite, 7Å-clinochlore, clinozoisite, prehnite, wairakite, and grossular) were computed, under the assumption of random mixing of atoms on energetically equivalent sites. Then, following the approach delineated in Sect. 2.2.1, the Gibbs free energy and the thermodynamic equilibrium constant of the dissolution reaction of the solid solutions with average activity of these pertinent endmembers were computed. These log K values are points of reference more representative than the log K of the dissolution reactions of the corresponding pure minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following Arnórsson et al. (1983b), the term “compatible” is utilized to indicate the chemical components whose activity is limited by incorporation in the lattice of hydrothermal alteration minerals.

References

  • Aagaard P, Helgeson HC (1983) Activity/composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed-layer clays. Clay Clay Miner 31:207–217

    Article  Google Scholar 

  • Aagaard P, Jahren JS (1992) Diagenetic illite-chlorite assemblages in arenites. II. Thermodynamic relations. Clay Clay Miner 40:547

    Article  Google Scholar 

  • Akasaka M, Hashimoto H, Makino K, Hino R (2003) 57Fe Mössbauer and X-ray Rietveld studies of ferrian prehnite from Kouragahana, Shimane Peninsula, Japan. J Minerol Petrol Sci 98:31–40

    Article  Google Scholar 

  • Akizuki M (1987) Al, Si order and the internal texture of prehnite. Can Mineral 25:707–716

    Google Scholar 

  • Albee AL (1962) Relationships between the mineral association, chemical composition and physical properties of the chlorite series. Am Mineral 47:851–870

    Google Scholar 

  • Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. Reviews in mineralogy and geochemistry, vol 45, pp 1–67

    Google Scholar 

  • Arnórsson S (1978) Major element chemistry of the geothermal sea-water at Reykjanes and Svartsengi. Iceland. Mineral. Mag. 42:209–220

    Article  Google Scholar 

  • Arnórsson S (1995) Geothermal systems in Iceland: structure and conceptual models—I. High-temperature areas. Geothermics 24:561–602

    Article  Google Scholar 

  • Arnórsson S, Gunnlaugsson E (1985) New gas geothermometers for geothermal exploration—calibration and application. Geochim Cosmochim Acta 49:1307–1325

    Article  Google Scholar 

  • Arnórsson S, Stefánsson A (1999) Assessment of feldspar solubility constants in water in the range of 0° to 350°C at vapor saturation pressures. Am J Sci 299:173–209

    Article  Google Scholar 

  • Arnórsson S, Gunnlaugsson E, Svavarsson H (1983a) The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 47:567–577

    Article  Google Scholar 

  • Arnórsson S, Gunnlaugsson E, Svavarsson H (1983b) The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochim Cosmochim Acta 47:547–566

    Article  Google Scholar 

  • Artioli G, Quartieri S, Deriu A (1995) Spectroscopic data on coexisting prehnite-pumpellyite and epidote-pumpellyite. Can Mineral 33:67–75

    Google Scholar 

  • Badaut D, Decarreau A, Besson G (1992) Ferripyrophyllite and related Fe3+-rich 2:1 clays in recent deposits of Atlantis II Deep, Red Sea. Clay Miner 27:227–244

    Article  Google Scholar 

  • Bailey SW (1988) Chlorites: structures and crystal chemistry. In: Bailey SW (ed) Hydrous Phyllosilicates (Exclusive of Micas). Reviews Mineralogy, vol 19, pp 347–403

    Google Scholar 

  • Balducci S, Chelini W (1992) Hydrothermal equilibria in the active Mofete geothermal system, Phlegraean Fields, Naples, Italy. Acta Vulcanologica Marinelli 2:17–34

    Google Scholar 

  • Ballantyne JM (1978) Hydrothermal alteration at the roosevelt hot springs thermal area, Utah: modal mineralogy, and geochemistry of sericite, chlorite, and feldspar from altered rocks. Thermal Power Company well Utah State 14-2. Topical Report, Dept. of Geology and Geophysics, Utah Univ., Salt Lake City, USA, 42 pp

    Google Scholar 

  • Bargar KE, Beeson MH (1981) Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming. Am Mineral 66:473–490

    Google Scholar 

  • Bargar KE, Beeson MH (1985) Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming. U.S. Geological Survey Professional Paper 1054-C, 23 pp

    Google Scholar 

  • Bargar KE, Keith TEC, Trusdell FA, Evans SR, Sykes ML (1996) Hydrothermal alteration mineralogy of SOH drill holes, Kilauea East Rift Zone geothermal area, Hawaii. U.S. Geological Survey Open-File Report No. 96-0010, 75 pp

    Google Scholar 

  • Baur WH, Joswig W, Kassner D, Hofmeister W (1990) Prehnite: structural similarity of the monoclinic and orthorhombic polymorphs and their Si/Al ordering. J Solid State Chem 86:330–333

    Article  Google Scholar 

  • Bird DK, Helgeson HC (1980) Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems—I. Thermodynamic analysis of phase relations in the system CaO-FeO-Fe2O3-Al2O3-SiO2-H2O-CO2. Am J Sci 280:907–941

    Article  Google Scholar 

  • Bird DK, Norton DL (1981) Theoretical prediction of phase relations among aqueous solutions and minerals: Salton Sea geothermal system. Geochim Cosmochim Ac 45:1479–1494

    Article  Google Scholar 

  • Bird DK, Spieler AR (2004) Epidote in geothermal systems. In: Liebscher A, Franz G (eds) Epidotes, Reviews in Mineralogy and Geochemistry, vol 56, pp 235–300

    Google Scholar 

  • Bird DK, Schiffman P, Elders WA, Williams AE, McDowell SD (1984) Calc-silicate mineralization in active geothermal systems. Econ Geol 79:671–695

    Article  Google Scholar 

  • Bird DK, Cho M, Janik CJ, Liou JG, Caruso LJ (1988) Compositional, order-disorder, and stable isotope characteristics of Al-Fe epidote, State 2-14 drill hole, Salton Sea geothermal system. J Geophys Res Sol Earth 93:13135–13144

    Article  Google Scholar 

  • Bish DL, Boak JM (2001) Cinoptilolite-heulandite nomenclature. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. Reviews in mineralogy and geochemistry, vol 45, pp 207–216

    Google Scholar 

  • Bishop BP, Bird DK (1987) Variation in sericite compositions from fracture zones within the Coso Hot Springs geothermal system. Geochim Cosmochim Acta 51:1245–1256

    Article  Google Scholar 

  • Bourdelle F, Parra T, Chopin C, Beyssac O (2013) A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib Mineral Petrol 165:723–735

    Article  Google Scholar 

  • Boyce AJ, Fulignati P, Sbrana A (2003) Deep hydrothermal circulation in a granite intrusion beneath Larderello geothermal area (Italy): constraints from mineralogy, fluid inclusions and stable isotopes. J Volcanol Geoth Res 126:243–262

    Article  Google Scholar 

  • Brigatti MF, Guggenheim S (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Rev Mineral Geochem 46:1–97

    Article  Google Scholar 

  • Browne PRL (1970) Hydrothermal alteration as an aid in investigating geothermal fields. Geothermics 2:564–570

    Article  Google Scholar 

  • Browne PRL (1977) Occurrence and hydrothermal alteration of diabase, Heber geothermal field, Imperial Valley, California. UCR/IGPP-77/9 Report, 61 pp

    Google Scholar 

  • Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Annu. Rev. Earth Pl. Sc. 6:229–248

    Article  Google Scholar 

  • Browne PRL, Ellis AJ (1970) The Ohaaki-Broadlands hydrothermal area, New Zealand: mineralogy and related geochemistry. Am J Sci 269:97–131

    Article  Google Scholar 

  • Capuano RM, Cole DR (1982) Fluid-mineral equilibria in a hydrothermal system, Roosevelt Hot Springs, Utah. Geochim Cosmochim Acta 46:1353–1364

    Article  Google Scholar 

  • Carpenter MA, Putnis A (1985) Cation order and disorder during crystal growth: some implications for natural mineral assemblages. In: Thompson AB, Rubie DC (eds) Metamorphic reactions: kinetics, textures, and deformation. Springer, New York, pp 1–26

    Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as function of temperature. Clay Miner 23:471–485

    Article  Google Scholar 

  • Cathelineau M, Izquierdo G (1988) Temperature-composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contrib Mineral Petr 100:418–428

    Article  Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer—the Los Azufres (Mexico) geothermal system. Contrib Mineral Petr 91:235–244

    Article  Google Scholar 

  • Cavarretta G, Tecce F (1987) Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini volcanic district, Latium, Italy. Geothermics 16:127–145

    Article  Google Scholar 

  • Cavarretta G, Gianelli G, Puxeddu M (1980) Hydrothermal metamorphism in the Larderello geothermal field. Geothermics 9:297–314

    Article  Google Scholar 

  • Cavarretta G, Gianelli G, Puxeddu M (1982) Formation of authigenic minerals and their use as indicators of the physicochemical parameters of the fluid in the Larderello-Travale geothermal field. Econ Geol 77:1071–1084

    Article  Google Scholar 

  • Cavarretta G, Gianelli G, Scandiffio G, Tecce F (1985) Evolution of the Latera geothermal system II: metamorphic, hydrothermal mineral assemblages and fluid chemistry. J Volcanol Geoth Res 26:337–364

    Article  Google Scholar 

  • Černý P, Chapman R (1986) Adularia from hydrothermal vein deposits: extremes in structural state. Can Mineral 24:717–728

    Google Scholar 

  • Chang LLY (1965) Subsolidus phase relations in the systems BaCO3-SrCO3, SrCO3-CaCO3, and BaCO3-CaCO3. J Geol 73:346–368

    Article  Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Marini L (1991) Chemical geothermometry and geobarometry in hydrothermal aqueous solutions: a theoretical investigation based on a mineral-solution equilibrium model. Geochim Cosmochim Acta 55:2709–2727

    Article  Google Scholar 

  • Chipera SJ, Apps JA (2001) Geochemical stability of natural zeolites. Rev Mineral Geochem 45:117–161

    Article  Google Scholar 

  • Cho M, Maruyama S, Liou JG (1987) An experimental investigation of heulandite-laumontite equilibrium at 1000 to 2000 bar P fluid. Contrib Mineral Petrol 97:43–50

    Article  Google Scholar 

  • Cho M, Liou JG, Bird DK (1988) Prograde phase relations in the State 2-14 Well metasandstones, Salton Sea geothermal field, California. J Geophys Res Sol Earth 93:13081–13103

    Article  Google Scholar 

  • Coombs DS (1952) Cell size, optical properties and chemical composition of laumontite and leonhardite. Am Mineral 37:812–830

    Google Scholar 

  • Coombs DS (1955) X-ray observations of wairakite and non-cubic analcime. Mineral Mag 30:699–708

    Google Scholar 

  • Crawford WA, Hoersch LA (1972) Calcite-aragonite equilibrium from 50°C to 150°C. Am Mineral 57:995–998

    Google Scholar 

  • Dachs E, Geiger CA (2019) Thermodynamic behaviour of grossular–andradite, Ca3(AlxFe 3+1−x )2Si3O12, garnets: a calorimetric study. Eur J Mineral 31:443–451

    Article  Google Scholar 

  • De Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clay Clay Miner 41:219–239

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1982) Rock forming minerals. Orthosilicates, vol 1A, 2nd edn. Geological Society of London, 919 pp

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2001) Rock-forming minerals. Framework silicates: Feldspars, vol 4A, 2nd edn. Geological Society of London, 972 pp

    Google Scholar 

  • Deer WA, Howie RA, Wise WS, Zussman J (2004) Rock-forming minerals. Framework silicates: silica minerals, feldspathoids, and the zeolites, vol 4B, 2nd edn. Geological Society of London, 982 pp

    Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • Ellis AJ (1970) Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics 2:516–528

    Article  Google Scholar 

  • Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic Press, 392 pp

    Google Scholar 

  • Ernst WG (1963) Significance of phengitic micas from low-grade schists. Am Mineral 48:1357–1373

    Google Scholar 

  • Exley RA (1982) Electron microprobe studies of Iceland Research Drilling Project high-temperature hydrothermal mineral geochemistry. J Geophys Res Sol Earth 87(B8):6547–6557

    Article  Google Scholar 

  • Fishman NS, Turner CE, Brownfield IK (1995) Authigenic albite in a Jurassic alkaline, saline lake deposit, Colorado Plateau. Evidence for early diagenetic origin. U.S. Geological Survey Bulletin 1808, Evolution of sedimentary basins—San Juan Basin, P1-P13

    Google Scholar 

  • Flehmig W (1977) The synthesis of feldspars at temperatures between 0–80°C, their ordering behaviour and twinning. Contrib Mineral Petr 65:1–9

    Article  Google Scholar 

  • Foster MD (1962) Interpretation of the composition and a classification of the chlorites: U.S. Geological Survey Professional Paper 414-A, 33 pp

    Google Scholar 

  • Fournier RO (1991) Water geothermometers applied to geothermal energy. In: D’Amore F (co-ordinator) Application of geochemistry in geothermal reservoir development. UNITAR, pp 37–69

    Google Scholar 

  • Fowler AP, Zierenberg RA, Schiffman P, Marks N, Friðleifsson GÓ (2015) Evolution of fluid–rock interaction in the Reykjanes geothermal system, Iceland: evidence from Iceland Deep Drilling Project core RN-17B. J Volcanol Geoth Res 302:47–63

    Article  Google Scholar 

  • Franz G, Liebscher A (2004) Physical and chemical properties of the epidote minerals. An introduction. In: Liebscher A, Franz G (eds) Epidotes. Reviews in mineral and geochemistry, vol 56, pp 1–82

    Google Scholar 

  • Fulignati P, Malfitano G, Sbrana A (1997) The Pantelleria caldera geothermal system: data from the hydrothermal minerals. J Volcanol Geoth Res 75:251–270

    Article  Google Scholar 

  • Geiger CA, Dachs E, Vielreicher NM, Rossman GR (2018) Heat capacity and entropy behavior of andradite: a multi-sample and—methodological investigation. Eur J Mineral 30:681–694

    Article  Google Scholar 

  • Gianelli G, Ruggieri G (2002) Evidence of a contact metamorphic aureole with high-temperature metasomatism in the deepest part of the active geothermal field of Larderello, Italy. Geothermics 31:443–474

    Article  Google Scholar 

  • Gianelli G, Mekuria N, Battaglia S, Chersicla A, Garofalo P, Ruggieri G, Manganelli M, Gebregziabher Z (1998) Water–rock interaction and hydrothermal mineral equilibria in the Tendaho geothermal system. J Volcanol Geoth Res 86:253–276

    Article  Google Scholar 

  • Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44:2021–2032

    Article  Google Scholar 

  • Giggenbach WF (1984) Mass transfer in hydrothermal alterations systems. Geochim Cosmochim Acta 48:2693–2711

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF (1997) The origin and evolution of fluids in magmatic-hydrothermal systems. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 737–796

    Google Scholar 

  • Gottschalk M (2004) Thermodynamic properties of zoisite, clinozoisite and epidote. In: Liebscher A, Franz G (eds) Epidotes, reviews in mineralogy and geochemistry, vol 56, pp 83–124

    Google Scholar 

  • Guidi M, Marini L, Scandiffio G, Cioni R (1990) Chemical geothermometry in hydrothermal aqueous solutions: the influence of ion complexing. Geothermics 19:415–441

    Article  Google Scholar 

  • Guidotti CV, Sassi FP (2002) Constraints on studies of metamorphic K-Na white micas. Rev Mineral Geochem 46:413–448

    Article  Google Scholar 

  • Hedenquist JW, Browne PR (1989) The evolution of the Waiotapu geothermal system, New Zealand, based on the chemical and isotopic composition of its fluids, minerals and rocks. Geochim Cosmochim Acta 53:2235–2257

    Article  Google Scholar 

  • Helgeson HC, Aagaard P (1985) Activity/composition relations among silicates and aqueous solutions; I, Thermodynamics of intrasite mixing and substitutional order/disorder in minerals. Am J Sci 285:769–844

    Article  Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278A, 229 p

    Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth-Sci Rev 19:1–50

    Article  Google Scholar 

  • Herdianita NR (2012) The evolution of the Darajat geothermal system, West Java—Indonesia. Ph.D. Thesis, University of Auckland, New Zealand, 264 pp

    Google Scholar 

  • Holland TJ (1989) Dependence of entropy on volume for silicate and oxide minerals: A review and predictive model. Am Mineral 74:5–13

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorp Geol 29:333–383

    Article  Google Scholar 

  • Inoue A, Meunier A, Beaufort D (2004) Illite-smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan. Clays Clay Miner 52:66–84

    Article  Google Scholar 

  • Inoue A, Kurokawa K, Hatta T (2010) Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, southwestern Hokkaido, Japan. Resour Geol 60:52–70

    Article  Google Scholar 

  • Jahren JS, Aagaard P (1992) Diagenetic illite-chlorite assemblages in arenites. I. Chemical evolution. Clay Clay Miner 40:540

    Article  Google Scholar 

  • Kastner M, Siever R (1979) Low temperature feldspars in sedimentary rocks. Am J Sci 279:435–479

    Article  Google Scholar 

  • Kastner M, Waldbaum DR (1968) Authigenic albite from Rhodes. Am Mineral 53:1579–1602

    Google Scholar 

  • Keith TE, Bargar KE (1988) Petrology and hydrothermal mineralogy of U.S. Geological Survey Newberry 2 drill core from Newberry Caldera, Oregon. J Geophys Res Sol Earth 93(B9):10174–10190

    Google Scholar 

  • Keith TE, Muffler LP, Cremer M (1968) Hydrothermal epidote formed in the Salton Sea geothermal system, California. Am Mineral 53:1635–1644

    Google Scholar 

  • Kiseleva I, Navrotsky A, Belitsky IA, Fursenko BA (1996) Thermochemistry and phase equilibria in calcium zeolites. Am Mineral 81:658–667

    Article  Google Scholar 

  • Kristmannsdóttir H (1979) Alteration of basaltic rocks by hydrothermal activity at 100–300°C. In: Mortland MM, Farmer VC (eds) International clay conference 1978. Developments in sedimentology, vol. 27. Elsevier, Amsterdam, pp 359–367

    Google Scholar 

  • Kristmannsdóttir H, Tomasson J (1976) Zeolite zones in geothermal areas in Iceland. Orkustofnun Report OS-JHD-7649, 11 pp

    Google Scholar 

  • Li G, Peacor DR, Coombs DS, Kawachi Y (1997) Solid solution in the celadonite family: The new minerals ferroceladonite, K2Fe22+Fe23+Si8O20(OH)4, and ferroaluminoceladonite, K2Fe22+Al2Si8O20(OH)4. Am Mineral 82:503–511

    Article  Google Scholar 

  • Liakopoulos A (1987) Hydrothermalisme et minéralisations métallifères de l’île de Milos (Cyclades, Grèce). Ph.D. Thesis Université de Paris VI, 276 pp

    Google Scholar 

  • Libbey RB, Williams-Jones AE (2016) Compositions of hydrothermal silicates and carbonates as indicators of physicochemical conditions in the Reykjanes geothermal system, Iceland. Geothermics 64:15–27

    Article  Google Scholar 

  • Liebscher A (2004) Spectroscopy of epidote minerals. In: Liebscher A, Franz G (eds) Epidotes, Reviews in mineralogy and geochemistry, vol 56, pp 125–170

    Google Scholar 

  • Liou JG (1970) Synthesis and stability relations of wairakite, CaAl2Si4O12 & #x22C5; 2H2O. Contrib Mineral Petrol 27:259–282

    Article  Google Scholar 

  • Liou JG (1971a) P-T stabilities of laumontite, wairakite, lawsonite, and related minerals in the system CaAl2Si2O8-SiO2-H2O. J Petrol 12:379–411

    Article  Google Scholar 

  • Liou JG (1971b) Stilbite-laumontite equilibrium. Contrib Mineral Petr 31:171–177

    Article  Google Scholar 

  • Locock AJ (2008) An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780. Code available from server at http://www.iamg.org/CGEditor/index.htm

  • Lonker SW, Gerald JDF (1990) Formation of coexisting 1 M and 2 M polytypes in illite from an active hydrothermal system. Am Mineral 75:1282–1289

    Google Scholar 

  • Lonker SW, Gerald JDF, Hedenquist JW, Walshe JL (1990) Mineral-fluid interactions in the Broadlands-Ohaaki geothermal system, New Zealand. Am J Sci 290:995–1068

    Article  Google Scholar 

  • Marini L, Canepa M, Cipolli F, Ottonello G, Vetuschi Zuccolini M (2001) Use of stream sediment chemistry to predict trace element chemistry of groundwater. A case study from the Bisagno valley (Genoa, Italy). J Hydrol 241:194–220

    Article  Google Scholar 

  • Marks N, Schiffman P, Zierenberg RA, Franzson H, Fridleifsson GÓ (2010) Hydrothermal alteration in the Reykjanes geothermal system: Insights from Iceland deep drilling program well RN-17. J Volcanol Geoth Res 189:172–190

    Article  Google Scholar 

  • Martin RF (1969) The hydrothermal synthesis of low albite. Contrib Mineral Petrol 23:323–339

    Article  Google Scholar 

  • Martinez-Serrano RG (2002) Chemical variations in hydrothermal minerals of the Los Humeros geothermal system, Mexico. Geothermics 31:579–612

    Article  Google Scholar 

  • Martinez-Serrano RG, Dubois M (1998) Chemical variations in chlorite at the Los Humeros geothermal system, Mexico. Clay Clay Miner 46:615–628

    Article  Google Scholar 

  • Mas A, Guisseau D, Mas PP, Beaufort D, Genter A, Sanjuan B, Girard JP (2006) Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe). J Volcanol Geoth Res 158:380–400

    Article  Google Scholar 

  • McCulloh TH, Frizzell VA, Stewart RJ, Barnes I (1981) Precipitation of laumontite with quartz, thenardite, and gypsum at Sespe Hot Springs, western Transverse Ranges, California. Clays Clay Miner 29:353–364

    Article  Google Scholar 

  • McDowell SD (1986) Composition and structural state of coexisting feldspars, Salton Sea geothermal field. Mineral Mag 50:75–84

    Article  Google Scholar 

  • McDowell SD, Elders WA (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contrib Mineral Petrol 74:293–310

    Article  Google Scholar 

  • McDowell SD, Elders WA (1983) Allogenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California. Am Mineral 68:1146–1159

    Google Scholar 

  • McIntire W (1963) Trace element partition coefficients- a review of theory and applications to geology. Geochim Cosmochim Acta 27:1209–1264

    Article  Google Scholar 

  • Mehegan JM, Robinson PT, Delaney JR (1982) Secondary mineralization and hydrothermal alteration in the Reydarfjordur drill core, eastern Iceland. J Geophys Res Sol Earth 87(B8):6511–6524

    Article  Google Scholar 

  • Milodowski AE, Savage D, Bath AH, Fortey NJ, Nancarrow PHA, Shepherd TJ (1989) Hydrothermal mineralogy in geothermal assessment: studies of Miravalles field, Costa Rica and experimental simulations of hydrothermal alteration. British Geological Survey Technical Report WE/89/63, 128 pp

    Google Scholar 

  • Morad S (1978) Feldspars in sedimentary rocks. In: Sedimentology. Encyclopedia of earth science. Springer, Berlin

    Google Scholar 

  • Muffler PLJ, White DE (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, Southeastern California. Bull Geol Soc Am 80:157–182

    Article  Google Scholar 

  • Muramatsu Y, Doi N (2000) Prehnite as an indicator of productive fractures in the shallow reservoir, Kakkonda geothermal system, northeast Japan. J Miner Petrol Sci 95:32–42

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Ogino T, Suzuki T, Sawada K (1987) The formation and transformation mechanism of calcium carbonate in water. Geochim Cosmochim Acta 51:2757–2767

    Article  Google Scholar 

  • Openshaw RE, Hemingway BS, Robie RA, Waldbaum DR, Krupka KM (1976) The heat capacities at low temperatures and entropies at 298.15 K of low albite, analbite, microcline, and high sanidine. US Geol Surv J Res 4:195–204

    Google Scholar 

  • Oscarson RL, Bargar KE (1996) Electron microprobe analyses of zeolite minerals from Neogene volcanic rocks in the Breitenbush-Austin Hot Springs area, Oregon. U.S. Geological Survey Open-File Report 96–41, 61 pp

    Google Scholar 

  • Ottolini LP, Raffone N, Fridleifsson GÓ, Tonarini S, D’Orazio M, Gianelli G (2012) A geochemical investigation of trace elements in well RN-17 at Reykjanes geothermal system, SW-Iceland. In: IOP conference series: materials science and engineering, vol 32. IOP Publishing, pp 012020

    Google Scholar 

  • Papike JJ, Zoltai T (1967) Ordering of tetrahedral aluminum in prehnite, Ca2(Al, Fe+3)[Si3AlO10](OH)2. Am Mineral 52:974–984

    Google Scholar 

  • Parsons I (2010) Feldspars defined and described: a pair of posters published by the Mineralogical Society.Sources and supporting information. Mineral Mag 74:529–551

    Article  Google Scholar 

  • Passaglia E, Sheppard RA (2001) The crystal chemistry of zeolites. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. Reviews in mineralogy and geochemistry, vol 45, pp 69–116

    Google Scholar 

  • Patrier P, Beaufort D, Meunier A, Eymery JP, Petit S (1991) Determination of nonequilibrium ordering state in epidote from the ancient geothermal field of Saint Martin: application of Mössbauer spectroscopy. Am Mineral 76:602–610

    Google Scholar 

  • Petrova VV (1970) Zeolites of the Paratunskii formation. In: Naboko SI (ed) Mineralogy of the hydrothermal systems of Kamchatka and the Kurile Islands. Academy of Sciences USSR, Siberian Branch, pp 97–116 (in Russian)

    Google Scholar 

  • Pirajino F (2009) Hydrothermal processes and mineral systems. Springer, Berlin, p 1250

    Book  Google Scholar 

  • Preisinger A (1965) Prehnit-ein neuer Schichtsilikattyp. Tscher Miner Petrog 10:491–504

    Article  Google Scholar 

  • Pryde AKA, Dove MT (1998) On the sequence of phase transitions in tridymite. Phys Chem Miner 26:171–179

    Article  Google Scholar 

  • Reeder R.J. (1990) Crystal chemistry of the rhombohedral carbonates. In: R. J. Reeder (Ed.), Carbonates: Mineralogy and chemistry. Rev. Mineral. Geochem., 11, 1–47

    Google Scholar 

  • Reyes AG (1990) Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. J Volcanol Geoth Res 43:279–309

    Article  Google Scholar 

  • Ribbe PH (ed) (1983) Feldspar mineralogy. Mineralogical Society of America, Washington D.C. Reviews in mineralogy, vol 2, 362 pp

    Google Scholar 

  • Rickwood PC (1968) On recasting analyses of garnet into end-member molecules. Contrib Mineral Petrol 18:175–198

    Article  Google Scholar 

  • Ruggieri G, Petrone CM, Gianelli G, Arias A, Henriquez ET (2006) Hydrothermal alteration in the Berlin geothermal field (El Salvador): new data and discussion on the natural state of the system. Period Mineral 75:293–312

    Google Scholar 

  • Sanjuan B., Brach M., Lasne E. (2001) Bouillante geothermal fluid: mixing and water/rock interaction processes at 250°C. In: Cidu R. (Ed.), Water-Rock Interaction, WRI-10, International Symposium on Water-Rock Interaction, Jun 2001, Villasimius, Italy. A.A. Balkema, 2, 911–914

    Google Scholar 

  • Sawaki T, Sasaki M, Fujimoto K, Takeno N (2001) Zinc-bearing actinolite from the Kakkonda geothermal system, Iwate Prefecture, northeastern Japan. Bull. Geol. Surv. Jpn 52:315–320

    Article  Google Scholar 

  • Schiffman P, Bird DK, Elders WA (1985) Hydrothermal mineralogy of calcareous sandstones from the Colorado River delta in the Cerro Prieto geothermal system, Baja California, Mexico. Mineral Mag 49:435–449

    Article  Google Scholar 

  • Seki Y, Onuki H, Okumura K, Takashima I (1969) Zeolite distribution in the Katayama geothermal area, Onikobe, Japan. Jpn J Geol Geogr 40:63–79

    Google Scholar 

  • Seki Y, Liou JG, Guillemette R, Sakai H, Oki Y, Hirano T, Onuki H (1983) Investigation of geothermal systems in Japan I. Onikobe geothermal area. Hydroscience and Geotechnology Laboratory, Saitama University, Memoir No. 3, 206 pp

    Google Scholar 

  • Shearer CK, Papike JJ, Simon SB, Davis BL, Laul JC (1988) Mineral reactions in altered sediments from the California State 2-14 well: Variations in the modal mineralogy, mineral chemistry and bulk composition of the Salton Sea Scientific Drilling Project core. J Geophys Res Sol Earth 93(B11):13104–13122

    Article  Google Scholar 

  • Shimazu M, Yajima J (1973) Epidote and wairakite in drill cores at the Hachimantai geothermal area, northeastern Japan. J Miner Petrol Sci 68:363–371

    Google Scholar 

  • Shock EL, Helgeson HC, Sverjensky DA (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochim Cosmochim Acta 53:2157–2183

    Article  Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar minerals. 1. Crystal structure, physical, chemical, and microtextural properties, 2nd edn. Springer, Berlin, 828 pp

    Google Scholar 

  • Stefánsson A, Arnórsson S (2000) Feldspar saturation state in natural waters. Geochim Cosmochim Acta 64:2567–2584

    Article  Google Scholar 

  • Steiner A (1953) Hydrothermal rock alteration at Wairakei, New Zealand. Econ Geol 48:1–13

    Article  Google Scholar 

  • Steiner A (1955) Wairakite, the calcium analogue of analcime, a new zeolite mineral. Mineral Mag 30:691–698

    Google Scholar 

  • Steiner A (1970) Genesis of hydrothermal K-feldspar (adularia) in an active geothermal environment at Wairakei, New Zealand. Mineral Mag 37:916–922

    Article  Google Scholar 

  • Sverjensky DA, Hemley JJ, D’Angelo WM (1991) Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim Cosmochim Ac 55:989–1004

    Google Scholar 

  • Teklemariam M, Battaglia S, Gianelli G, Ruggieri G (1996) Hydrothermal alteration in the Aluto-Langano geothermal field, Ethiopia. Geothermics 25:679–702

    Article  Google Scholar 

  • Thompson JB Jr (1969) Chemical reactions in crystals. Am Mineral 54:341–375

    Google Scholar 

  • Thompson AB (1970) Laumontite equilibria and the zeolite facies. Am J Sci 269:267–275

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Article  Google Scholar 

  • Velde B (1977) Clays and clay minerals in natural and synthetic systems. Developments in Sedimentology, vol 21. Elsevier, Amsterdam, p 217

    Google Scholar 

  • Viereck LG, Griffin BJ, Schmincke HU, Pritchard RG (1982) Volcaniclastic rocks of the Reydarfjordur drill hole, eastern Iceland: 2. Alteration. J Geophys Res Sol Earth 87(B8):6459–6476

    Article  Google Scholar 

  • Walther JV, Helgeson HC (1977) Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures. Am J Sci 277:1315–1351

    Article  Google Scholar 

  • Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Developments in sedimentology, vol 15. Elsevier, Amsterdam

    Google Scholar 

  • Weissberg BG, Browne PR, Seward TM (1979) Ore metals in active geothermal systems. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 738–780

    Google Scholar 

  • Wheeler RS, Browne PRL, Rodgers KA (2001) Iron-rich and iron-poor prehnites from the Way Linggo epithermal Au-Ag deposit, southwest Sumatra, and the Heber geothermal field, California. Mineral Mag 65:397–406

    Article  Google Scholar 

  • Wiewióra A, Weiss Z (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Miner 25:83–92

    Article  Google Scholar 

  • Winchell AN (1933) Elements of optical mineralogy: an introduction to microscopic petrography. Part 2. Descriptions of minerals, with special reference to their optical and microscopic characters, 3rd edn. Wiley, New York, p 459

    Google Scholar 

  • Zunić TB, Šćavničar S, Molin G (1990) Crystal structure of prehnite from Komiža. Eur J Mineral 2:731–734

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Marini .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cioni, R., Marini, L. (2020). The Hydrothermal Minerals. In: A Thermodynamic Approach to Water Geothermometry. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-54318-1_4

Download citation

Publish with us

Policies and ethics