Skip to main content

Renal Mass Biopsy: Future Trends and Developments

  • Chapter
  • First Online:
Renal Mass Biopsy

Abstract

Renal mass biopsy is a diagnostic technique that can be employed to evaluate the small renal mass (SRM); however, it remains underutilized to this day. The overall accuracy of percutaneous SRM biopsy is between 79% and 100%. The main shortcomings of renal mass biopsy are related to the inconsistencies in tumor grade and differentiation between some benign (i.e., oncocytoma) and malignant (i.e., chromophobe renal cell carcinoma) lesions and between different malignant subtypes. Future developments in this context include improvement of imaging modalities, development and validation of novel targeted biopsy platforms, and investigation of new biomarkers and cytogenetic features for molecular fingerprinting of the renal mass. Incorporation of these new developments to conventional axial imaging studies and histopathological examination can potentially aid in better risk stratification and management planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsivian M, Rampersaud EN Jr, del Pilar Laguna Pes M, Joniau S, Leveillee RJ, Shingleton WB, et al. Small renal mass biopsy–how, what and when: report from an international consensus panel. BJU Int. 2014;113(6):854–63.

    Article  PubMed  Google Scholar 

  2. Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst. 2010;102(9):605–13.

    Article  PubMed  Google Scholar 

  3. Tsivian M, Mouraviev V, Albala DM, Caso JR, Robertson CN, Madden JF, Polascik TJ. Clinical predictors of renal mass pathological features. BJU Int. 2011;107(5):735–40.

    Article  PubMed  Google Scholar 

  4. Kutikov A, Egleston BL, Canter D, Smaldone MC, Wong YN, Uzzo RG. Competing risks of death in patients with localized renal cell carcinoma: a comorbidity based model. J Urol. 2012;188(6):2077–83.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lane BR, Samplaski MK, Herts BR, Zhou M, Novick AC, Campbell SC. Renal mass biopsy–a renaissance? J Urol. 2008;179(1):20–7.

    Article  PubMed  Google Scholar 

  6. Rybicki FJ, Shu KM, Cibas ES, Fielding JR, van Sonnenberg E, Silverman SG. Percutaneous biopsy of renal masses: sensitivity and negative predictive value stratified by clinical setting and size of masses. AJR Am J Roentgenol. 2003;180(5):1281–7.

    Article  PubMed  Google Scholar 

  7. Volpe A, Kachura JR, Geddie WR, Evans AJ, Gharajeh A, Saravanan A, Jewett MA. Techniques, safety and accuracy of sampling of renal tumors by fine needle aspiration and core biopsy. J Urol. 2007;178(2):379–86.

    Article  PubMed  Google Scholar 

  8. Tomaszewski JJ, Uzzo RG, Smaldone MC. Heterogeneity and renal mass biopsy: a review of its role and reliability. Cancer Biol Med. 2014;11(3):162–72.

    PubMed  PubMed Central  Google Scholar 

  9. Shannon BA, Cohen RJ, de Bruto H, Davies RJ. The value of preoperative needle core biopsy for diagnosing benign lesions among small, incidentally detected renal masses. J Urol. 2008;180(4):1257–6.

    Article  PubMed  Google Scholar 

  10. Prince J, Bultman E, Hinshaw L, Drewry A, Blute M, Best S, et al. Patient and tumor characteristics can predict nondiagnostic renal mass biopsy findings. J Urol. 2015;193(6):1899–904.

    Article  PubMed  Google Scholar 

  11. Leveridge MJ, Finelli A, Kachura JR, Evans A, Chung H, Shiff DA, et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur Urol. 2011;60(3):578–84.

    Article  PubMed  Google Scholar 

  12. Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24.

    Article  PubMed  Google Scholar 

  13. Farrell C, Noyes SL, Tourojman M, Lane BR. Renal angiomyolipoma: preoperative identification of atypical fat-poor AML. Curr Urol Rep. 2015;16(3):12.

    Article  PubMed  Google Scholar 

  14. Pierorazio PM, Hyams ES, Tsai S, Feng Z, Trock BJ, Mullins JK, et al. Multiphasic enhancement patterns of small renal masses (≤4 cm) on preoperative computed tomography: utility for distinguishing subtypes of renal cell carcinoma, angiomyolipoma, and oncocytoma. Urology. 2013;81(6):1265–71.

    Article  PubMed  Google Scholar 

  15. Haifler M, Kutikov A. Update on renal mass biopsy. Curr Urol Rep. 2017;18(4):28.

    Article  PubMed  Google Scholar 

  16. Judson BL, Shaha AR. Nuclear imaging and minimally invasive surgery in the management of hyperparathyroidism. J Nucl Med. 2008;49(11):1813–8.

    Article  PubMed  Google Scholar 

  17. Beller GA, Heede RC. SPECT imaging for detecting coronary artery disease and determining prognosis by noninvasive assessment of myocardial perfusion and myocardial viability. J Cardiovasc Transl Res. 2011;4(4):416–24.

    Article  PubMed  Google Scholar 

  18. Rowe SP, Gorin MA, Gordetsky J, Ball MW, Pierorazio PM, Higuchi T, et al. Initial experience using 99mTc-MIBI SPECT/CT for the differentiation of oncocytoma from renal cell carcinoma. Clin Nucl Med. 2015;40(4):309–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hendrikse NH, Franssen EJ, van der Graaf WT, Meijer C, Piers DA, Vaalburg W, de Vries EG. 99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer. 1998;77(3):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gorin MA, Rowe SP, Baras AS, Solnes LB, Ball MW, Pierorazio PM, et al. Prospective evaluation of (99m)Tc-sestamibi SPECT/CT for the diagnosis of renal oncocytomas and hybrid oncocytic/chromophobe tumors. Eur Urol. 2016;69(3):413–6.

    Article  PubMed  Google Scholar 

  21. Sheikhbahaei S, Jones CS, Porter KK, Rowe SP, Gorin MA, Baras AS, et al. Defining the added value of 99mTc-MIBI SPECT/CT to conventional cross-sectional imaging in the characterization of enhancing solid renal masses. Clin Nucl Med. 2017;42(4):e188–93.

    Article  PubMed  Google Scholar 

  22. Gofrit ON, Orevi M. Diagnostic challenges of kidney cancer: a systematic review of the role of positron emission tomography-computerized tomography. J Urol. 2016;196(3):648–57.

    Article  PubMed  Google Scholar 

  23. Kayani I, Avril N, Bomanji J, Chowdhury S, Rockall A, Sahdev A, et al. Sequential FDG-PET/CT as a biomarker of response to Sunitinib in metastatic clear cell renal cancer. Clin Cancer Res. 2011;17(18):6021–8.

    Article  CAS  PubMed  Google Scholar 

  24. Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;31(2):187–94.

    Article  PubMed  Google Scholar 

  25. Raman CV, Krishnan KSA. New type of secondary radiation. Nature. 1928;121:501–2.

    Article  CAS  Google Scholar 

  26. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol. 2000;45(2):R1–59.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Du Z, Zhang J, Jiang H. Renal mass biopsy using Raman spectroscopy identifies malignant and benign renal tumors: potential for pre-operative diagnosis. Oncotarget. 2017;8(22):36012–9.

    PubMed  PubMed Central  Google Scholar 

  28. https://en.wikipedia.org/wiki/Michelson_interferometer. Image by Krishnavedala – Own work, CC BY-SA 4.0. https://commons.wikimedia.org/w/index.php?curid=36946699.

  29. Wagstaff PG, Swaan A, Ingels A, Zondervan PJ, van Delden OM, Faber DJ, et al. In vivo, percutaneous, needle based, optical coherence tomography of renal masses. J Vis Exp. 2015;30(97). https://doi.org/10.3791/52574.

  30. Mourant JR, Freyer JP, Hielscher AH, Eick AA, Shen D, Johnson TM. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt. 1999;37(16):3586–93.

    Article  Google Scholar 

  31. Barwari K, de Bruin DM, Faber DJ, van Leeuwen TG, de la Rosette JJ, Laguna MP. Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study. BJU Int. 2012;110(8 Pt B):E415–20.

    Article  PubMed  Google Scholar 

  32. Wagstaff PG, Ingels A, de Bruin DM, Buijs M, Zondervan PJ, Savci Heijink CD, et al. Percutaneous needle based optical coherence tomography for the differentiation of renal masses: a pilot cohort. J Urol. 2016;195(5):1578–85.

    Article  PubMed  Google Scholar 

  33. Buijs M, Wagstaff PGK, de Bruin DM, Zondervan PJ, Savci-Heijink CD, van Delden OM, et al. An in-vivo prospective study of the diagnostic yield and accuracy of optical biopsy compared with conventional renal mass biopsy for the diagnosis of renal cell carcinoma: the interim analysis. Eur Urol Focus. 2017;pii:S2405-4569(17)30239-0.

    Google Scholar 

  34. Farber NJ, Kim CJ, Modi PK, Hon JD, Sadimin ET, Singer EA. Renal cell carcinoma: the search for a reliable biomarker. Transl Cancer Res. 2017;6(3):620–32.

    Article  CAS  PubMed  Google Scholar 

  35. Ball MW, Gorin MA, Guner G, Pierorazio PM, Netto G, Paller CJ, et al. Circulating tumor DNA as a marker of therapeutic response in patients with renal cell carcinoma: a pilot study. Clin Genitourin Cancer. 2016;14(5):e515–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gorin MA, Ball MW, Davis DW, Allaf M. Development of an antibody-free method for detecting renal cell carcinoma circulating tumor cells. Fourteenth International Kidney Cancer Symposium. BJU Int. 2015;116(suppl):S5.

    Google Scholar 

  37. Mozer P, Troccaz J, Stoianovici D. Urologic robots and future directions. Curr Opin Urol. 2009;19(1):114–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bruyère F, Ayoub J, Arbeille P. Use of a telerobotic arm to perform ultrasound guidance during renal biopsy in transplant recipients: a preliminary study. J Endourol. 2011;25(2):231–4.

    Article  PubMed  Google Scholar 

  39. Mathiassen K, Fjellin JE, Glette K, Hol PK, Elle OJ. An ultrasound robotic system using the commercial robot UR5. Front Robot AI. 2016. https://www.frontiersin.org/articles/10.3389/frobt.2016.00001/full.

  40. American Urological Association. Renal mass and localized renal cancer: AUA guideline. www.auanet.org/education/guidelines/renal-mass.cfm.

  41. Papworth K, Sandlund J, Grankvist K, Ljungberg B, Rasmuson T. Soluble carbonic anhydrase IX is not an independent prognostic factor in human renal cell carcinoma. Anticancer Res. 2010;30(7):2953–7.

    CAS  PubMed  Google Scholar 

  42. Kroeger N, Klatte T, Chamie K, Rao PN, Birkhäuser FD, Sonn GA, et al. Deletions of chromosomes 3p and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer. 2013;119(8):1547–54.

    Article  CAS  PubMed  Google Scholar 

  43. Lee HW, Lee EH, Lee CH, Chang HK, Rha SH. Diagnostic utility of caveolin-1 and MOC-31 in distinguishing chromophobe renal cell carcinoma from renal oncocytoma. Korean J Urol. 2011;52(2):96–103.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lim A, O’Neil B, Heilbrun ME, Dechet C, Lowrance WT. The contemporary role of renal mass biopsy in the management of small renal tumors. Front Oncol. 2012;2:106.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koul H, Huh JS, Rove KO, Crompton L, Koul S, Meacham RB, Kim FJ. Molecular aspects of renal cell carcinoma: a review. Am J Cancer Res. 2011;1(2):240–54.

    PubMed  Google Scholar 

  46. Furge KA, Lucas KA, Takahashi M, Sugimura J, Kort EJ, Kanayama HO, et al. Robust classification of renal cell carcinoma based on gene expression data and predicted cytogenetic profiles. Cancer Res. 2004;64(12):4117–21.

    Article  CAS  PubMed  Google Scholar 

  47. Chopra S, Liu J, Alemozaffar M, Nichols PW, Aron M, Weisenberger DJ, et al. Improving needle biopsy accuracy in small renal mass using tumor-specific DNA methylation markers. Oncotarget. 2017;8(3):5439–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Polascik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aminsharifi, A., Polascik, T.J. (2020). Renal Mass Biopsy: Future Trends and Developments. In: Leveillee, R., Jorda, M. (eds) Renal Mass Biopsy. Springer, Cham. https://doi.org/10.1007/978-3-030-36036-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36036-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36035-1

  • Online ISBN: 978-3-030-36036-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics