Skip to main content
Log in

SPECT Imaging for Detecting Coronary Artery Disease and Determining Prognosis by Noninvasive Assessment of Myocardial Perfusion and Myocardial Viability

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Basic knowledge of active and passive transport mechanisms for concentrating monovalent cations in myocardial cells led to the investigation of the application of radioisotopes of potassium, thallium, rubidium, and ammonia to the in vivo noninvasive assessment of regional myocardial perfusion and viability utilizing gamma camera or positron emission tomographic (PET) imaging technology. Subsequently, technetium-99m (Tc-99m)-labeled isonitriles (sestamibi and tetrofosmin), which bind to mitochondrial membranes, emerged as superior imaging agents with single photon emission tomography (SPECT) imaging. When any of these imaging agents are injected intravenously during either exercise or pharmacologic stress, myocardial defects in tracer uptake represent either abnormal regional flow reserve or myocardial scar reflecting of coronary artery disease (CAD). The major clinical indications for stress SPECT or PET myocardial perfusion imaging are for detection of CAD as the cause of chest pain and risk stratification for prognostication. Patients with normal stress myocardial perfusion scans have an excellent prognosis with <1.0% annual rate future annual death or nonfatal infarction. The greater the extent and severity of ischemic perfusion defects (defects seen on stress images but improve on resting images), the greater the subsequent death or infarction rate during follow-up. Rest imaging alone is performed for determination of myocardial viability in patients with CAD and severe left ventricular dysfunction. Myocardial segments showing >50% uptake compared to normal uptake have a better long-term outcome with revascularization than with medical therapy with enhanced left ventricular function and improved survival. Other applications of SPECT imaging include the evaluation of cardiac sympathetic function, assessment of myocardial metabolism in health and disease, and molecular imaging of coronary atherosclerosis and myocardial stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watson, D. D., & Glover, D. K. (2010). Overview of tracer kinetics and cellular mechanisms of uptake. In B. L. Zaret & G. A. Beller (Eds.), Clinical nuclear cardiology (4th ed., pp. 3–13). Mosby: Elsevier.

    Google Scholar 

  2. Grunwald, A. M., Watson, D. D., Holzgrefe, H. H., Jr., Irving, J. F., & Beller, G. A. (1981). Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation, 64, 610–618.

    Article  PubMed  CAS  Google Scholar 

  3. Beller, G. A., Holzgrefe, H. H., & Watson, D. D. (1983). Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201. Circulation, 68, 1328–1338.

    Article  PubMed  CAS  Google Scholar 

  4. Pohost, G. M., Zir, L. M., Moore, R. H., McKusick, K. A., Guiney, T. E., & Beller, G. A. (1977). Differentiation of transiently ischemic myocardium from infracted myocardium by serial imaging after a single dose of thallium-201. Circulation, 55, 294–302.

    PubMed  CAS  Google Scholar 

  5. Strauss, H. W., Harrison, K., Langan, J. K., Lebowitz, E., & Pitt, B. (1975). Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation, 51, 641–645.

    PubMed  CAS  Google Scholar 

  6. McCall, D., Zimmer, L. J., & Katz, A. M. (1985). Kinetics of thallium exchange in cultured rat myocardial cells. Circulation Research, 56, 370–376.

    PubMed  CAS  Google Scholar 

  7. Salerno, M., & Beller, G. A. (2009). Circulation: Cardiovascular Imaging, 2, 412–24.

    Article  PubMed  Google Scholar 

  8. Glover, D. K., Ruiz, M., Yang, J. Y., Smith, W. H., Watson, D. D., & Beller, G. A. (1997). Myocardial 99mTc-tetrofosmin uptake during adenosine-induced vasodilation with either a critical or mild coronary stenosis: comparison with Tl-201 and regional myocardial blood flow. Circulation, 96, 2332–2338.

    PubMed  CAS  Google Scholar 

  9. Shanoudy, H., Raggi, P., Beller, G. A., Siliman, A., Ammerman, E. G., Kastner, R. J., et al. (1998). Comparison of technetium-99m tetrofosmin and thallium-201 single-photon computed tomography imaging for detection of myocardial perfusion defects in patients with coronary artery disease. Journal of the American College of Cardiology, 31, 331–37.

    Article  PubMed  CAS  Google Scholar 

  10. Piwnicka-Worms, D. P., Kronauge, J. F., LeFurgey, A., et al. (1994). Mitochondrial localization and characterization of 99Tc-sestamibi in heart cells by electron probe x-ray microanalysis and 99Tc-NMR spectroscopy. Magnetic Resonance Imaging, 12, 641–652.

    Article  Google Scholar 

  11. Piwnicka-Worms, D., Kronauge, J. F., Delmon, L., Holman, B. L., Marsh, J. S., & Jones, A. G. (1990). Effect of metabolic inhibition on technetium-99m MIBI kinetics in cultured chick myocardial cells. Journal of Nuclear Medicine, 31, 464–472.

    Google Scholar 

  12. Klocke, F. J., Baird, M. G., Lorell, B. H., Bateman, T. M., Messer, J. V., Berman, D. S., et al. (2003). ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation, 108, 1404–1418.

    Article  PubMed  Google Scholar 

  13. Camici, P. G., & Crea, F. (2007). Coronary microvascular dysfunction. New England Medicine, 356, 830–840.

    Article  CAS  Google Scholar 

  14. Beanlands, R. S. B., & Youssef, G. (2010). Diagnosis and prognosis of coronary artery disease: PET is superior to SPECT: Pro. Journal of Nuclear Cardiology, 17, 683–695.

    Article  PubMed  Google Scholar 

  15. Ziadi, M. C., & Beanlands, R. S. B. (2010). The clinical utility of assessing myocardial blood flow using positron emission tomography. Journal of Nuclear Cardiology, 17, 571–581.

    Article  PubMed  Google Scholar 

  16. Herzog, B. A., Husmann, L., Valenta, I., Gaemperli, O., Siegrist, P. T., Tay, F. M., et al. (2009). Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography: added value of coronary flow reserve. Journal of American College of Cardiology, 54, 150–156.

    Article  Google Scholar 

  17. Lima, R. S., Watson, D. D., Goode, A. R., Siadaty, M. S., Ragosta, M., Beller, G. A., et al. (2003). Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three vessel coronary artery disease. Journal of the American College of Cardiology, 42, 64–70.

    Article  PubMed  Google Scholar 

  18. Beller, G. A. (2008). Underestimation of coronary artery disease with SPECT perfusion imaging. Journal of Nuclear Cardiology, 15, 151–53.

    Article  PubMed  Google Scholar 

  19. Berman, D. S., Kang, X., Slomka, P. J., Gerlach, J., Yang, L., Hayes, S. W., et al. (2007). Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. Journal of Nuclear Cardiology, 14, 521–28.

    Article  PubMed  Google Scholar 

  20. Smith, W. H., Kastner, R. J., Calnon, D. A., Segella, D., Beller, G. A., & Watson, D. D. (1997). Quantitative gated single photon emission computed tomography imaging: a counts based method for display and measurement of regional and global ventricular systolic function. Journal of Nuclear Cardiology, 4, 451–63.

    Article  PubMed  CAS  Google Scholar 

  21. Sharir, T., Germano, G., Kavanagh, P. B., Shenan, L., Cohen, I., Lewin, H. C., et al. (1999). Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation, 100, 1035–42.

    PubMed  CAS  Google Scholar 

  22. Shaw, L. J., & Iskandrian, A. E. (2004). Prognostic value of gated myocardial perfusion SPECT. Journal of Nuclear Cardiology, 11, 171–85.

    Article  PubMed  Google Scholar 

  23. Navare, S. M., Mather, J. F., Shaw, L. J., Fowler, M. S., & Heller, G. V. (2004). Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: a meta-analysis. Journal of Nuclear Cardiology, 11, 551–61.

    Article  PubMed  Google Scholar 

  24. Hakeem, B., Bhatti, D. K. N., Cook, J. R., Zainab, S., Roth-Cline, M. D., et al. (2008). Predictive value of myocardial single-photon emission computed tomography and the impact of renal function on cardiac death. Circulation, 118, 2540–54.

    Article  PubMed  Google Scholar 

  25. Hachamovitch, R., Berman, D. S., Kiat, H., et al. (2002). Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: an evaluation of incremental prognostic value and cost-effectiveness. Circulation, 105, 823–29.

    Article  PubMed  Google Scholar 

  26. Bourque, J. M., Holland, B. H., Watson, D. D., & Beller, G. A. (2009). Achieving an exercise workload of ≥10 metabolic equivalents predicts a very low risk of inducible ischemia: Does myocardial perfusion imaging have a role? Journal of the American College of Cardiology, 54, 538–45.

    Article  PubMed  Google Scholar 

  27. Hachamovitch, R., Hayes, S. W., Friedman, J. D., Cohen, I., & Berman, D. S. (2003). Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission tomography. Circulation, 107, 2900–7.

    Article  PubMed  Google Scholar 

  28. Anand, D. V., Lim, E., Hopkins, D., et al. (2006). Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. European Heart Journal, 27, 713–21.

    Article  PubMed  Google Scholar 

  29. Greenland, P., Alpert, J. S., Beller, G. A., Benjamin, E. J., Budoff, M. J., Fayad, Z. A., et al. (2010). 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 56, 2182–99.

    Article  Google Scholar 

  30. Castellani, M., Colombo, A., Giodano, R., Pusineri, E., Canzi, C., Longari, V., et al. (2010). The role of PET with 13N-ammonia and 18F-FDG in the assessment of myocardial perfusion and metabolism in patients with recent AMI and intracoronary stem cell injection. Journal of Nuclear Medicine, 51, 1909–16.

    Article  Google Scholar 

  31. Shaw, L. J., Berman, D. S., Maron, D. J., Mancini, J., Hayes, S. W., Hartigan, P. M., et al. (2008). Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: Results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) Trial Nuclear Substudy. Circulation, 117, 1283–91.

    Article  PubMed  Google Scholar 

  32. Hendel, R. C., Bateman, T. M., Cerqueira, M. D., Iskandrian, A. E., Leppo, J. A., Blackburn, B., et al. (2005). Initial clinical experience with regadenoson, a novel selective A2a agonist for pharmacologic stress single-photon emission tomography myocardial perfusion imaging. Journal of the American College of Cardiology, 46, 2069–75.

    Article  PubMed  CAS  Google Scholar 

  33. Jaroudi, W., & Al, I. A. E. (2009). Regadenoson: a new myocardial stress agent. Journal of the American College of Cardiology, 54, 1123–30.

    Article  PubMed  Google Scholar 

  34. Schinkel, A. F. L., Poldermans, D., Elhendy, A., & Bax, J. (2007). Assessment of myocardial viability in patients with heart failure. Journal of Nuclear Medicine, 48, 1135–56.

    Article  PubMed  Google Scholar 

  35. Pagley, P. R., Beller, G. A., Watson, D. D., Gimple, L. W., & Ragosta, M. (1997). Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation, 96, 793–800.

    PubMed  CAS  Google Scholar 

  36. Allman, K. C., Shaw, L. J., Hachamovitch, R., & Udelson, J. E. (2002). Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. Journal of the American College of Cardiology, 39, 1151–58.

    Article  PubMed  Google Scholar 

  37. Gibbons, R. J., & Miller, T. D. (2005). Tc-99m sestamibi infarct size as a surrogate endpoint. Journal of Nuclear Cardiology, 12, 12–19.

    Article  PubMed  Google Scholar 

  38. Slomka, P. J., Patton, J. A., Berman, D. S., & Germano, G. (2009). Advances in technical aspects of myocardial perfusion SPECT imaging. Journal of Nuclear Cardiology, 16, 255–76.

    Article  PubMed  Google Scholar 

  39. Beller, G. A. (2010). Importance of consideration of radiation doses from cardiac imaging procedures and risks of cancer. Journal of Nuclear Cardiology, 17, 1–3.

    Article  PubMed  Google Scholar 

  40. Chang, S. M., Nabi, F., Xu, J., Raza, U., & Mahmarian, J. J. (2010). Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. Journal of the American College of Cardiology, 55, 221–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Beller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beller, G.A., Heede, R.C. SPECT Imaging for Detecting Coronary Artery Disease and Determining Prognosis by Noninvasive Assessment of Myocardial Perfusion and Myocardial Viability. J. of Cardiovasc. Trans. Res. 4, 416–424 (2011). https://doi.org/10.1007/s12265-011-9290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9290-2

Keywords

Navigation