Skip to main content

Local Drug Delivery for Noninfectious Uveitis

  • Chapter
  • First Online:
Treatment of Non-infectious Uveitis

Abstract

Ocular inflammation lends itself to local therapies as both anterior and posterior segments of the eye are easily accessible and complications remain localized. Delivery can be via the subconjunctival, periocular, or intravitreal routes, and longer-acting vitreous implants have garnered significant interest. Intraocular injections have the added advantage of allowing medications to directly bypass the blood–ocular barriers.

Corticosteroids are the cornerstone of uveitis management and remain the best studied for local therapy. However, there is burgeoning research into steroid-sparing drugs given in this route. Antivascular endothelial growth factors bevacizumab and ranibizumab have shown promise, particularly in treating inflammatory choroidal neovascularization. Intravitreal methotrexate has shown encouraging outcomes as a second-line agent, while intravitreal sirolimus has shown some potential. Tumor necrosis factor alpha inhibitors have demonstrated equivocal outcomes with the suggestion of increased inflammatory activity post-intravitreal injection, such that their use outside of clinical trials is currently not recommended.

Medical management aims to treat the inflammation, and the sequelae of cystoid macular edema and choroidal neovascularization. This chapter summarizes the literature surrounding the indications and outcomes of treatment, pharmacodynamics and pharmacokinetics, and the complications of local injectable uveitis medications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein DA, Do D, Noronha G, Kissner JM, Srivastava SK, Nguyen QD. Suprachoroidal corticosteroid administration: a novel route for local treatment of noninfectious uveitis. Transl Vis Sci Technol. 2016;5(6):14.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yeh S, Kurup SK, Wang RC, Foster CS, Noronha G, Nguyen QD, et al. Suprachoroidal injection of triamcinolone acetonide, CLS-TA, for macular edema due to noninfectious uveitis: a randomized, Phase 2 study (DOGWOOD). Retina. 2018;

    Google Scholar 

  3. Cunningham ETJ, Wender JD. Practical approach to the use of corticosteroids in patients with uveitis. Can J Ophthalmol. 2010;45(4):352–8.

    Article  PubMed  Google Scholar 

  4. Babu K, Mahendradas P. Medical management of uveitis – current trends. Indian J Ophthalmol. 2013;61(6):277–83.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jain MR, Srivastava S. Ocular penetration of hydrocortisone and dexamethasone into the aqueous humour after subconjunctival injection. Trans Ophthalmol Soc U K. 1978;98(1):63–5.

    CAS  PubMed  Google Scholar 

  6. McGhee CN, Watson DG, Midgley JM, Noble MJ, Dutton GN, Fern AI. Penetration of synthetic corticosteroids into human aqueous humour. Eye (Lond). 1990;4(Pt 3):526–30.

    Article  Google Scholar 

  7. Weijtens O, Feron EJ, Schoemaker RC, Cohen AF, Lentjes EG, Romijn FP, et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am J Ophthalmol. 1999;128(2):192–7.

    Article  CAS  PubMed  Google Scholar 

  8. Weijtens O, Schoemaker RC, Romijn FP, Cohen AF, Lentjes EG, van Meurs JC. Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology. 2002;109(10):1887–91.

    Article  PubMed  Google Scholar 

  9. Athanasiadis Y, Tsatsos M, Sharma A, Hossain P. Subconjunctival triamcinolone acetonide in the management of ocular inflammatory disease. J Ocul Pharmacol Ther. 2013;29(6):516–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kalina PH, Erie JC, Rosenbaum L. Biochemical quantification of triamcinolone in subconjunctival depots. Arch Ophthalmol. 1995;113(7):867–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sevel D, Abramson A. Necrogranulomatous scleritis treated by an onlay scleral graft. Br J Ophthalmol. 1972;56(11):791–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tu EY, Culbertson WW, Pflugfelder SC, Huang A, Chodosh JC. Therapy of nonnecrotizing anterior scleritis with subconjunctival corticosteroid injection. Ophthalmology. 1995;102(5):718–24.

    Article  CAS  PubMed  Google Scholar 

  13. Croasdale CR, Brightbill FS. Subconjunctival corticosteroid injections for nonnecrotizing anterior scleritis. Arch Ophthalmol. 1999;117(7):966–8.

    Article  CAS  PubMed  Google Scholar 

  14. Zamir E, Read RW, Smith RE, Wang RC, Rao NA. A prospective evaluation of subconjunctival injection of triamcinolone acetonide for resistant anterior scleritis. Ophthalmology. 2002;109(4):798–805.

    Article  PubMed  Google Scholar 

  15. Albini TA, Zamir E, Read RW, Smith RE, See RF, Rao NA. Evaluation of subconjunctival triamcinolone for nonnecrotizing anterior scleritis. Ophthalmology. 2005;112(10):1814–20.

    Article  PubMed  Google Scholar 

  16. Roufas A, Jalaludin B, Gaskin C, McCluskey P. Subconjunctival triamcinolone treatment for non-necrotising anterior scleritis. Br J Ophthalmol. 2010;94(6):743–7.

    Article  CAS  PubMed  Google Scholar 

  17. Sohn EH, Wang R, Read R, Roufas A, Teo L, Moorthy R, et al. Long-term, multicenter evaluation of subconjunctival injection of triamcinolone for non-necrotizing, noninfectious anterior scleritis. Ophthalmology. 2011;118(10):1932–7.

    Article  PubMed  Google Scholar 

  18. Gaudio PA. A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul Immunol Inflamm. 2004;12(3):169–92.

    Article  CAS  PubMed  Google Scholar 

  19. Akduman L, Kolker AE, Black DL, Del Priore LV, Kaplan HJ. Treatment of persistent glaucoma secondary to periocular corticosteroids. Am J Ophthalmol. 1996;122(2):275–7.

    Article  CAS  PubMed  Google Scholar 

  20. Athanasiadis Y, Nithyanandrajah GA, Kumar B, Sharma A. Reversal of steroid induced raised intraocular pressure following removal of subconjunctival triamcinolone for cataract surgery. Cont Lens Anterior Eye. 2009;32(3):143–4.

    Article  CAS  PubMed  Google Scholar 

  21. Merkoudis N, Wikberg Matsson A, Granstam E. Comparison of peroperative subconjunctival injection of methylprednisolone and standard postoperative steroid drops after uneventful cataract surgery. Acta Ophthalmol. 2014;92(7):623–8.

    Article  CAS  PubMed  Google Scholar 

  22. Agrawal S, Agrawal J, Agrawal TP. Conjunctival ulceration following triamcinolone injection. Am J Ophthalmol. 2003;136(3):539–40.

    Article  PubMed  Google Scholar 

  23. Johnson KS, Chu DS. Evaluation of sub-Tenon triamcinolone acetonide injections in the treatment of scleritis. Am J Ophthalmol. 2010;149(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  24. Beardsley RM, Suhler EB, Rosenbaum JT, Lin P. Pharmacotherapy of scleritis: current paradigms and future directions. Expert Opin Pharmacother. 2013;14(4):411–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sen HN, Vitale S, Gangaputra SS, Nussenblatt RB, Liesegang TL, Levy-Clarke GA, et al. Periocular corticosteroid injections in uveitis: effects and complications. Ophthalmology. 2014;121(11):2275–86.

    Article  PubMed  Google Scholar 

  26. Ferrante P, Ramsey A, Bunce C, Lightman S. Clinical trial to compare efficacy and side-effects of injection of posterior sub-Tenon triamcinolone versus orbital floor methylprednisolone in the management of posterior uveitis. Clin Experiment Ophthalmol. 2004;32(6):563–8.

    Article  PubMed  Google Scholar 

  27. Leder HA, Jabs DA, Galor A, Dunn JP, Thorne JE. Periocular triamcinolone acetonide injections for cystoid macular edema complicating noninfectious uveitis. Am J Ophthalmol. 2011;152(3):441–48.e2.

    Article  CAS  PubMed  Google Scholar 

  28. Salek SS, Leder HA, Butler NJ, Gan TJ, Dunn JP, Thorne JE. Periocular triamcinolone acetonide injections for control of intraocular inflammation associated with uveitis. Ocul Immunol Inflamm. 2013;21(4):257–63.

    Article  CAS  PubMed  Google Scholar 

  29. Thorne JE, Sugar EA, Holbrook JT, Burke AE, Altaweel MM, Vitale AT, et al. Periocular triamcinolone vs. intravitreal triamcinolone vs. intravitreal dexamethasone implant for the treatment of uveitic macular edema: the PeriOcular vs. INTravitreal corticosteroids for uveitic macular edema (POINT) trial. Ophthalmology. 2019;126(2):283–95.

    Article  PubMed  Google Scholar 

  30. Venkatesh P, Kumar CS, Abbas Z, Garg S. Comparison of the efficacy and safety of different methods of posterior subtenon injection. Ocul Immunol Inflamm. 2008;16(5):217–23.

    Article  PubMed  Google Scholar 

  31. Tanner V, Kanski JJ, Frith PA. Posterior sub-Tenon’s triamcinolone injections in the treatment of uveitis. Eye (Lond). 1998;12:679–85.

    Article  Google Scholar 

  32. Jermak CM, Dellacroce JT, Heffez J, Peyman GA. Triamcinolone acetonide in ocular therapeutics. Surv Ophthalmol. 2007;52(5):503–22.

    Article  CAS  PubMed  Google Scholar 

  33. Riordan-Eva P, Lightman S. Orbital floor steroid injections in the treatment of uveitis. Eye (Lond). 1994;8:66–9.

    Article  Google Scholar 

  34. Yoshikawa K, Kotake S, Ichiishi A, Sasamoto Y, Kosaka S, Matsuda H. Posterior sub-Tenon injections of repository corticosteroids in uveitis patients with cystoid macular edema. Jpn J Ophthalmol. 1995;39(1):71–6.

    CAS  PubMed  Google Scholar 

  35. Weijtens O, Schoemaker RC, Lentjes EG, Romijn FP, Cohen AF, van Meurs JC. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology. 2000;107(10):1932–8.

    Article  CAS  PubMed  Google Scholar 

  36. Nan K, Sun S, Li Y, Qu J, Li G, Luo L, et al. Characterisation of systemic and ocular drug level of triamcinolone acetonide following a single sub-Tenon injection. Br J Ophthalmol. 2010;94(5):654–8.

    Article  PubMed  Google Scholar 

  37. Weijtens O, van der Sluijs FA, Schoemaker RC, Lentjes EG, Cohen AF, Romijn FP, et al. Peribulbar corticosteroid injection: vitreal and serum concentrations after dexamethasone disodium phosphate injection. Am J Ophthalmol. 1997;123(3):358–63.

    Article  CAS  PubMed  Google Scholar 

  38. Helm CJ, Holland GN. The effects of posterior subtenon injection of triamcinolone acetonide in patients with intermediate uveitis. Am J Ophthalmol. 1995;120(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  39. Iwao K, Inatani M, Kawaji T, Koga T, Mawatari Y, Tanihara H. Frequency and risk factors for intraocular pressure elevation after posterior sub-Tenon capsule triamcinolone acetonide injection. J Glaucoma. 2007;16(2):251–6.

    Article  PubMed  Google Scholar 

  40. Byun YS, Park YH. Complications and safety profile of posterior subtenon injection of triamcinolone acetonide. J Ocul Pharmacol Ther. 2009;25(2):159–62.

    Article  CAS  PubMed  Google Scholar 

  41. Roesel M, Gutfleisch M, Heinz C, Heimes B, Zurek-Imhoff B, Heiligenhaus A. Orbital floor triamcinolone acetonide injections for the management of active non-infectious uveitis. Eye (Lond). 2009;23(4):910–4.

    Article  CAS  Google Scholar 

  42. Jea SY, Byon IS, Oum BS. Triamcinolone-induced intraocular pressure elevation: intravitreal injection for macular edema and posterior subtenon injection for uveitis. Korean J Ophthalmol. 2006;20(2):99–103.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kawamura R, Inoue M, Shinoda H, Shinoda K, Itoh Y, Ishida S, et al. Incidence of increased intraocular pressure after subtenon injection of triamcinolone acetonide. J Ocul Pharmacol Ther. 2011;27(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  44. Graham RO, Peyman GA. Intravitreal injection of dexamethasone. Treatment of experimentally induced endophthalmitis. Arch Ophthalmol. 1974;92(2):149–54.

    Article  CAS  PubMed  Google Scholar 

  45. Antcliff RJ, Spalton DJ, Stanford MR, Graham EM, Ffytche TJ, Marshall J. Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study. Ophthalmology. 2001;108(4):765–72.

    Article  CAS  PubMed  Google Scholar 

  46. Young S, Larkin G, Branley M, Lightman S. Safety and efficacy of intravitreal triamcinolone for cystoid macular oedema in uveitis. Clin Experiment Ophthalmol. 2001;29(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  47. Androudi S, Letko E, Meniconi M, Papadaki T, Ahmed M, Foster CS. Safety and efficacy of intravitreal triamcinolone acetonide for uveitic macular edema. Ocul Immunol Inflamm. 2005;13(2–3):205–12.

    Article  CAS  PubMed  Google Scholar 

  48. Roesel M, Gutfleisch M, Heinz C, Heimes B, Zurek-Imhoff B, Heiligenhaus A. Intravitreal and orbital floor triamcinolone acetonide injections in noninfectious uveitis: a comparative study. Ophthalmic Res. 2009;42(2):81–6.

    Article  CAS  PubMed  Google Scholar 

  49. Shin JY, Yu HG. Intravitreal triamcinolone injection for uveitic macular edema: a randomized clinical study. Ocul Immunol Inflamm. 2015;23(6):430–6.

    Article  CAS  PubMed  Google Scholar 

  50. Kok H, Lau C, Maycock N, McCluskey P, Lightman S. Outcome of intravitreal triamcinolone in uveitis. Ophthalmology. 2005;112(11):1916.e1–7.

    Article  Google Scholar 

  51. Ozkiris A. Intravitreal triamcinolone acetonide injection for the treatment of posterior uveitis. Ocul Immunol Inflamm. 2006;14(4):233–8.

    Article  CAS  PubMed  Google Scholar 

  52. Park UC, Park JH, Yu HG. Long-term outcome of intravitreal triamcinolone acetonide injection for the treatment of uveitis attacks in Behcet disease. Ocul Immunol Inflamm. 2014;22(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  53. Kwak HW, D’Amico DJ. Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol. 1992;110(2):259–66.

    Article  CAS  PubMed  Google Scholar 

  54. Tempest-Roe S, Joshi L, Dick AD, Taylor SR. Local therapies for inflammatory eye disease in translation: past, present and future. BMC Ophthalmol. 2013;13(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Inoue M, Takeda K, Morita K, Yamada M, Tanigawara Y, Oguchi Y. Vitreous concentrations of triamcinolone acetonide in human eyes after intravitreal or subtenon injection. Am J Ophthalmol. 2004;138(6):1046–8.

    Article  CAS  PubMed  Google Scholar 

  56. Andrade RE, Muccioli C, Farah ME, Nussenblatt RB, Belfort R Jr. Intravitreal triamcinolone in the treatment of serous retinal detachment in Vogt-Koyanagi-Harada syndrome. Am J Ophthalmol. 2004;137(3):572–4.

    Article  PubMed  Google Scholar 

  57. Beer PM, Bakri SJ, Singh RJ, Liu W, Peters GB 3rd, Miller M. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology. 2003;110(4):681–6.

    Article  PubMed  Google Scholar 

  58. Audren F, Tod M, Massin P, Benosman R, Haouchine B, Erginay A, et al. Pharmacokinetic-pharmacodynamic modeling of the effect of triamcinolone acetonide on central macular thickness in patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2004;45(10):3435–41.

    Article  PubMed  Google Scholar 

  59. Couch SM, Bakri SJ. Intravitreal triamcinolone for intraocular inflammation and associated macular edema. Clin Ophthalmol. 2009;3:41–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jonas JB. Intraocular availability of triamcinolone acetonide after intravitreal injection. Am J Ophthalmol. 2004;137(3):560–2.

    Article  CAS  PubMed  Google Scholar 

  61. van Kooij B, Rothova A, de Vries P. The pros and cons of intravitreal triamcinolone injections for uveitis and inflammatory cystoid macular edema. Ocul Immunol Inflamm. 2006;14(2):73–85.

    Article  PubMed  CAS  Google Scholar 

  62. Chin HS, Park TS, Moon YS, Oh JH. Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina. 2005;25(5):556–60.

    Article  PubMed  Google Scholar 

  63. Chen H, Sun S, Li J, Du W, Zhao C, Hou J, et al. Different intravitreal properties of three triamcinolone formulations and their possible impact on retina practice. Invest Ophthalmol Vis Sci. 2013;54(3):2178–85.

    Article  PubMed  CAS  Google Scholar 

  64. Dodwell DG, Krimmel DA, de Fiebre CM. Sterile endophthalmitis rates and particle size analyses of different formulations of triamcinolone acetonide. Clin Ophthalmol. 2015;9:1033–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zacharias LC, Lin T, Migon R, Ghosn C, Orilla W, Feldmann B, et al. Assessment of the differences in pharmacokinetics and pharmacodynamics between four distinct formulations of triamcinolone acetonide. Retina. 2013;33(3):522–31.

    Article  CAS  PubMed  Google Scholar 

  66. Kiddee W, Trope GE, Sheng L, Beltran-Agullo L, Smith M, Strungaru MH, et al. Intraocular pressure monitoring post intravitreal steroids: a systematic review. Surv Ophthalmol. 2013;58(4):291–310.

    Article  PubMed  Google Scholar 

  67. Lasave AF, Zeballos DG, El-Haig WM, Diaz-Llopis M, Salom D, Arevalo JF. Short-term results of a single intravitreal bevacizumab (Avastin) injection versus a single intravitreal triamcinolone acetonide (Kenacort) injection for the management of refractory noninfectious uveitic cystoid macular edema. Ocul Immunol Inflamm. 2009;17(6):423–30.

    Article  CAS  PubMed  Google Scholar 

  68. Rechtman E, Danis RP, Pratt LM, Harris A. Intravitreal triamcinolone with photodynamic therapy for subfoveal choroidal neovascularisation in age related macular degeneration. Br J Ophthalmol. 2004;88(3):344–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gillies MC, Sutter FK, Simpson JM, Larsson J, Ali H, Zhu M. Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology. 2006;113(9):1533–8.

    Article  PubMed  Google Scholar 

  70. Jonisch J, Lai JC, Deramo VA, Flug AJ, Fastenberg DM. Increased incidence of sterile endophthalmitis following intravitreal preserved triamcinolone acetonide. Br J Ophthalmol. 2008;92(8):1051–4.

    Article  CAS  PubMed  Google Scholar 

  71. Roth DB, Chieh J, Spirn MJ, Green SN, Yarian DL, Chaudhry NA. Noninfectious endophthalmitis associated with intravitreal triamcinolone injection. Arch Ophthalmol. 2003;121(9):1279–82.

    Article  PubMed  Google Scholar 

  72. Jonas JB, Kreissig I, Spandau UH, Harder B. Infectious and noninfectious endophthalmitis after intravitreal high-dosage triamcinolone acetonide. Am J Ophthalmol. 2006;141(3):579–80.

    Article  CAS  PubMed  Google Scholar 

  73. Lorenzo-Carrero J, Gonzalez Barcia M, Perez Flores I. Sterile endophthalmitis after benzyl alcohol filtered triamcinolone acetonide injection. Arch Ophthalmol. 2008;126(1):142–3.

    Article  PubMed  Google Scholar 

  74. Roth D, Lee SS, Flynn HW, Moshfeghi DM. Inflammatory reactions after intravitreal triamcinolone acetonide: possible mechanisms and therapeutic options. Exp Rev Ophthalmol. 2010;5(3):273–6.

    Article  Google Scholar 

  75. Tomkins-Netzer O, Taylor SR, Bar A, Lula A, Yaganti S, Talat L, et al. Treatment with repeat dexamethasone implants results in long-term disease control in eyes with noninfectious uveitis. Ophthalmology. 2014;121(8):1649–54.

    Article  PubMed  Google Scholar 

  76. Callanan DG, Jaffe GJ, Martin DF, Pearson PA, Comstock TL. Treatment of posterior uveitis with a fluocinolone acetonide implant: three-year clinical trial results. Arch Ophthalmol. 2008;126(9):1191–201.

    Article  PubMed  Google Scholar 

  77. Pavesio C, Zierhut M, Bairi K, Comstock TL, Usner DW. Evaluation of an intravitreal fluocinolone acetonide implant versus standard systemic therapy in noninfectious posterior uveitis. Ophthalmology. 2010;117(3):567–75, 75.e1.

    Article  PubMed  Google Scholar 

  78. Kempen JH, Altaweel MM, Holbrook JT, Jabs DA, Louis TA, Sugar EA, et al. Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the Multicenter Uveitis Steroid Treatment trial. Ophthalmology. 2011;118(10):1916–26.

    Article  PubMed  Google Scholar 

  79. Kempen JH, Altaweel MM, Drye LT, Holbrook JT, Jabs DA, Sugar EA, et al. Benefits of systemic anti-inflammatory therapy versus fluocinolone acetonide intraocular implant for intermediate uveitis, posterior uveitis, and panuveitis: fifty-four-month results of the Multicenter Uveitis Steroid Treatment (MUST) trial and follow-up study. Ophthalmology. 2015;122(10):1967–75.

    Article  PubMed  Google Scholar 

  80. Kempen JH, Altaweel MM, Holbrook JT, Sugar EA, Thorne JE, Jabs DA, et al. Association between long-lasting intravitreous fluocinolone acetonide implant vs systemic anti-inflammatory therapy and visual acuity at 7 years among patients with intermediate, posterior, or panuveitis. JAMA. 2017;317(19):1993–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mikhail M, Sallam A. Novel intraocular therapy in non-infectious uveitis of the posterior segment of the eye. Med Hypothesis Discov Innov Ophthalmol. 2013;2(4):113–20.

    PubMed  PubMed Central  Google Scholar 

  82. Campochiaro PA, Nguyen QD, Hafiz G, Bloom S, Brown DM, Busquets M, et al. Aqueous levels of fluocinolone acetonide after administration of fluocinolone acetonide inserts or fluocinolone acetonide implants. Ophthalmology. 2013;120(3):583–7.

    Article  PubMed  Google Scholar 

  83. Driot JY, Novack GD, Rittenhouse KD, Milazzo C, Pearson PA. Ocular pharmacokinetics of fluocinolone acetonide after Retisert intravitreal implantation in rabbits over a 1-year period. J Ocul Pharmacol Ther. 2004;20(3):269–75.

    Article  CAS  PubMed  Google Scholar 

  84. Kempen JH, Altaweel MM, Drye LT, Holbrook JT, Jabs DA, Sugar EA, et al. Quality of life and risks associated with systemic anti-inflammatory therapy versus fluocinolone acetonide intraocular implant for intermediate uveitis, posterior uveitis, or panuveitis: fifty-four-month results of the Multicenter Uveitis Steroid Treatment trial and follow-up study. Ophthalmology. 2015;122(10):1976–86.

    Article  Google Scholar 

  85. Akduman L, Cetin EN, Levy J, Becker MD, Mackensen F, Lim LL. Spontaneous dissociation and dislocation of Retisert pellet. Ocul Immunol Inflamm. 2013;21(1):87–9.

    Article  PubMed  Google Scholar 

  86. Holbrook JT, Sugar EA, Burke AE, Vitale AT, Thorne JE, Davis J, et al. Dissociations of the fluocinolone acetonide implant: the Multicenter Uveitis Steroid Treatment (MUST) trial and follow-up study. Am J Ophthalmol. 2016;164:29–36.

    Article  CAS  PubMed  Google Scholar 

  87. Georgalas I, Koutsandrea C, Papaconstantinou D, Mpouritis D, Petrou P. Scleral melt following Retisert intravitreal fluocinolone implant. Drug Des Devel Ther. 2014;8:2373–5.

    PubMed  PubMed Central  Google Scholar 

  88. Lowder C, Belfort R Jr, Lightman S, Foster CS, Robinson MR, Schiffman RM, et al. Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol. 2011;129(5):545–53.

    Article  PubMed  Google Scholar 

  89. Khurana RN, Bansal AS, Chang LK, Palmer JD, Wu C, Wieland MR. Prospective evaluation of a sustained-release dexamethasone intravitreal implant for cystoid macular edema in quiescent uveitis. Retina. 2017;37(9):1692–9.

    Article  CAS  PubMed  Google Scholar 

  90. Zarranz-Ventura J, Carreno E, Johnston RL, Mohammed Q, Ross AH, Barker C, et al. Multicenter study of intravitreal dexamethasone implant in noninfectious uveitis: indications, outcomes, and reinjection frequency. Am J Ophthalmol. 2014;158(6):1136–45.e5.

    Article  CAS  PubMed  Google Scholar 

  91. Tomkins-Netzer O, Talat L, Seguin-Greenstein S, Bar A, Lightman S. Outcome of treating pediatric uveitis with dexamethasone implants. Am J Ophthalmol. 2016;161:110–15.e2.

    Article  PubMed  Google Scholar 

  92. Chang-Lin JE, Attar M, Acheampong AA, Robinson MR, Whitcup SM, Kuppermann BD, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  93. Chang-Lin JE, Burke JA, Peng Q, Lin T, Orilla WC, Ghosn CR, et al. Pharmacokinetics of a sustained-release dexamethasone intravitreal implant in vitrectomized and nonvitrectomized eyes. Invest Ophthalmol Vis Sci. 2011;52(7):4605–9.

    Article  CAS  PubMed  Google Scholar 

  94. Rishi P, Mathur G, Rishi E. Fractured Ozurdex implant in the vitreous cavity. Indian J Ophthalmol. 2012;60(4):337–8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bourgault S, Albiani D. Re: Split Ozurdex implant: a caution. Can J Ophthalmol. 2013;48(3):218–9.

    Article  PubMed  Google Scholar 

  96. Roy R, Hegde S. Split Ozurdex implant: a caution. Can J Ophthalmol. 2013;48(1):e15–6.

    Article  PubMed  Google Scholar 

  97. Bhagat R, Zhang J, Farooq S, Li XY. Comparison of the release profile and pharmacokinetics of intact and fragmented dexamethasone intravitreal implants in rabbit eyes. J Ocul Pharmacol Ther. 2014;30(10):854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Haller JA, Bandello F, Belfort R Jr, Blumenkranz MS, Gillies M, Heier J, et al. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology. 2010;117(6):1134–46.e3.

    Article  PubMed  Google Scholar 

  99. Boyer DS, Yoon YH, Belfort R Jr, Bandello F, Maturi RK, Augustin AJ, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14.

    Article  PubMed  Google Scholar 

  100. Cebeci Z, Kir N. Role of implants in the treatment of diabetic macular edema: focus on the dexamethasone intravitreal implant. Diabetes Metab Syndr Obes. 2015;8:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jaffe GJ, Lin P, Keenan RT, Ashton P, Skalak C, Stinnett SS. Injectable fluocinolone acetonide long-acting implant for noninfectious intermediate uveitis, posterior uveitis, and panuveitis: two-year results. Ophthalmology. 2016;123(9):1940–8.

    Article  PubMed  Google Scholar 

  102. Kane FE, Green KE. Ocular pharmacokinetics of fluocinolone acetonide following Iluvien implantation in the vitreous humor of rabbits. J Ocul Pharmacol Ther. 2015;31(1):11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Campochiaro PA, Brown DM, Pearson A, Chen S, Boyer D, Ruiz-Moreno J, et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012;119(10):2125–32.

    Article  PubMed  Google Scholar 

  104. Fine HF, Baffi J, Reed GF, Csaky KG, Nussenblatt RB. Aqueous humor and plasma vascular endothelial growth factor in uveitis-associated cystoid macular edema. Am J Ophthalmol. 2001;132(5):794–6.

    Article  CAS  PubMed  Google Scholar 

  105. Shimada H, Yuzawa M, Hirose T, Nakashizuka H, Hattori T, Kazato Y. Pathological findings of multifocal choroiditis with panuveitis and punctate inner choroidopathy. Jpn J Ophthalmol. 2008;52(4):282–8.

    Article  PubMed  Google Scholar 

  106. Weiss K, Steinbrugger I, Weger M, Ardjomand N, Maier R, Wegscheider BJ, et al. Intravitreal VEGF levels in uveitis patients and treatment of uveitic macular oedema with intravitreal bevacizumab. Eye (Lond). 2009;23(9):1812–8.

    Article  CAS  Google Scholar 

  107. Fine HF, Zhitomirsky I, Freund KB, Barile GR, Shirkey BL, Samson CM, et al. Bevacizumab (Avastin) and ranibizumab (Lucentis) for choroidal neovascularization in multifocal choroiditis. Retina. 2009;29(1):8–12.

    Article  PubMed  Google Scholar 

  108. Lott MN, Schiffman JC, Davis JL. Bevacizumab in inflammatory eye disease. Am J Ophthalmol. 2009;148(5):711–17.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cornish KS, Williams GJ, Gavin MP, Imrie FR. Visual and optical coherence tomography outcomes of intravitreal bevacizumab and ranibizumab in inflammatory choroidal neovascularization secondary to punctate inner choroidopathy. Eur J Ophthalmol. 2011;21(4):440–5.

    Article  PubMed  Google Scholar 

  110. D’Ambrosio E, Tortorella P, Iannetti L. Management of uveitis-related choroidal neovascularization: from the pathogenesis to the therapy. J Ophthalmol. 2014;2014:450428.

    PubMed  PubMed Central  Google Scholar 

  111. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 29 Feb 2000. Identifier NCT02623426, Macular Edema Ranibizumab v. Intravitreal anti-inflammatory Therapy Trial (MERIT); 7 Dec 2015 [cited 1 Nov 2018]; [about 8 screens]. Available from: https://clinicaltrials.gov/ct2/show/NCT02623426?term=merit+uveitis&rank=1.

  112. Lai TYY, Staurenghi G, Lanzetta P, Holz FG, Melissa Liew SH, Desset-Brethes S, et al. Efficacy and safety of ranibizumab for the treatment of choroidal neovascularization due to uncommon cause: twelve-month results of the MINERVA study. Retina. 2018;38(8):1464–77.

    Article  CAS  PubMed  Google Scholar 

  113. Mansour AM, Arevalo JF, Fardeau C, Hrisomalos EN, Chan WM, Lai TY, et al. Three-year visual and anatomic results of administrating intravitreal bevacizumab in inflammatory ocular neovascularization. Can J Ophthalmol. 2012;47(3):269–74.

    Article  PubMed  Google Scholar 

  114. Cervantes-Castaneda RA, Giuliari GP, Gallagher MJ, Yilmaz T, MacDonell RE, Quinones K, et al. Intravitreal bevacizumab in refractory uveitic macular edema: one-year follow-up. Eur J Ophthalmol. 2009;19(4):622–9.

    Article  PubMed  Google Scholar 

  115. Soheilian M, Rabbanikhah Z, Ramezani A, Kiavash V, Yaseri M, Peyman GA. Intravitreal bevacizumab versus triamcinolone acetonide for refractory uveitic cystoid macular edema: a randomized pilot study. J Ocul Pharmacol Ther. 2010;26(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  116. Bae JH, Lee CS, Lee SC. Efficacy and safety of intravitreal bevacizumab compared with intravitreal and posterior sub-tenon triamcinolone acetonide for treatment of uveitic cystoid macular edema. Retina. 2011;31(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  117. Mackensen F, Heinz C, Becker MD, Heiligenhaus A. Intravitreal bevacizumab (Avastin) as a treatment for refractory macular edema in patients with uveitis: a pilot study. Retina. 2008;28(1):41–5.

    Article  PubMed  Google Scholar 

  118. Acharya NR, Hong KC, Lee SM. Ranibizumab for refractory uveitis-related macular edema. Am J Ophthalmol. 2009;148(2):303–9.e2.

    Article  CAS  PubMed  Google Scholar 

  119. Al-Dhibi H, Khan AO. Bilateral response following unilateral intravitreal bevacizumab injection in a child with uveitic cystoid macular edema. J AAPOS. 2009;13(4):400–2.

    Article  PubMed  Google Scholar 

  120. Acharya NR, Sittivarakul W, Qian Y, Hong KC, Lee SM. Bilateral effect of unilateral ranibizumab in patients with uveitis-related macular edema. Retina. 2011;31(9):1871–6.

    Article  CAS  PubMed  Google Scholar 

  121. Krohne TU, Eter N, Holz FG, Meyer CH. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146(4):508–12.

    Article  CAS  PubMed  Google Scholar 

  122. Krohne TU, Liu Z, Holz FG, Meyer CH. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol. 2012;154(4):682–86.e2.

    Article  CAS  PubMed  Google Scholar 

  123. Ahn SJ, Ahn J, Park S, Kim H, Hwang DJ, Park JH, et al. Intraocular pharmacokinetics of ranibizumab in vitrectomized versus nonvitrectomized eyes. Invest Ophthalmol Vis Sci. 2014;55(1):567–73.

    Article  CAS  PubMed  Google Scholar 

  124. Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br J Ophthalmol. 2014;98(12):1636–41.

    Article  PubMed  Google Scholar 

  125. Mansour AM, Mackensen F, Mahendradas P, Khairallah M, Lai TY, Bashshur Z. Five-year visual results of intravitreal bevacizumab in refractory inflammatory ocular neovascularization. Clin Ophthalmol. 2012;6:1233–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Penedones A, Mendes D, Alves C, Batel Marques F. Safety monitoring of ophthalmic biologics: a systematic review of pre- and postmarketing safety data. J Ocul Pharmacol Ther. 2014;30(9):729–51.

    Article  CAS  PubMed  Google Scholar 

  127. Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2014;(8):CD005139.

    Google Scholar 

  128. van der Reis MI, La Heij EC, De Jong-Hesse Y, Ringens PJ, Hendrikse F, Schouten JS. A systematic review of the adverse events of intravitreal anti-vascular endothelial growth factor injections. Retina. 2011;31(8):1449–69.

    Article  PubMed  Google Scholar 

  129. Dedania VS, Bakri SJ. Sustained elevation of intraocular pressure after intravitreal anti-VEGF agents: what is the evidence? Retina. 2015;35(5):841–58.

    Article  CAS  PubMed  Google Scholar 

  130. Schmid MK, Bachmann LM, Fas L, Kessels AG, Job OM, Thiel MA. Efficacy and adverse events of aflibercept, ranibizumab and bevacizumab in age-related macular degeneration: a trade-off analysis. Br J Ophthalmol. 2015;99(2):141–6.

    Article  PubMed  Google Scholar 

  131. Biagi C, Conti V, Montanaro N, Melis M, Buccellato E, Donati M, et al. Comparative safety profiles of intravitreal bevacizumab, ranibizumab and pegaptanib: the analysis of the WHO database of adverse drug reactions. Eur J Clin Pharmacol. 2014;70(12):1505–12.

    Article  CAS  PubMed  Google Scholar 

  132. Polizzi S, Mahajan VB. Intravitreal anti-VEGF injections in pregnancy: case series and review of literature. J Ocul Pharmacol Ther. 2015;31(10):605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fishburne BC, Wilson DJ, Rosenbaum JT, Neuwelt EA. Intravitreal methotrexate as an adjunctive treatment of intraocular lymphoma. Arch Ophthalmol. 1997;115(9):1152–6.

    Article  CAS  PubMed  Google Scholar 

  134. Smith JR, Rosenbaum JT, Wilson DJ, Doolittle ND, Siegal T, Neuwelt EA, et al. Role of intravitreal methotrexate in the management of primary central nervous system lymphoma with ocular involvement. Ophthalmology. 2002;109(9):1709–16.

    Article  PubMed  Google Scholar 

  135. Velez G, Boldt HC, Whitcup SM, Nussenblatt RB, Robinson MR. Local methotrexate and dexamethasone phosphate for the treatment of recurrent primary intraocular lymphoma. Ophthalmic Surg Lasers. 2002;33(4):329–33.

    PubMed  Google Scholar 

  136. Hardwig PW, Pulido JS, Erie JC, Baratz KH, Buettner H. Intraocular methotrexate in ocular diseases other than primary central nervous system lymphoma. Am J Ophthalmol. 2006;142(5):883–5.

    Article  CAS  PubMed  Google Scholar 

  137. Taylor SR, Habot-Wilner Z, Pacheco P, Lightman SL. Intraocular methotrexate in the treatment of uveitis and uveitic cystoid macular edema. Ophthalmology. 2009;116(4):797–801.

    Article  PubMed  Google Scholar 

  138. Bae JH, Lee SC. Effect of intravitreal methotrexate and aqueous humor cytokine levels in refractory retinal vasculitis in Behcet disease. Retina. 2012;32(7):1395–402.

    Article  CAS  PubMed  Google Scholar 

  139. Taylor SR, Banker A, Schlaen A, Couto C, Matthe E, Joshi L, et al. Intraocular methotrexate can induce extended remission in some patients in noninfectious uveitis. Retina. 2013;33(10):2149–54.

    Article  CAS  PubMed  Google Scholar 

  140. Nakauchi Y, Takase H, Sugita S, Mochizuki M, Shibata S, Ishiwata Y, et al. Concurrent administration of intravenous systemic and intravitreal methotrexate for intraocular lymphoma with central nervous system involvement. Int J Hematol. 2010;92(1):179–85.

    Article  CAS  PubMed  Google Scholar 

  141. Velez G, Yuan P, Sung C, Tansey G, Reed GF, Chan CC, et al. Pharmacokinetics and toxicity of intravitreal chemotherapy for primary intraocular lymphoma. Arch Ophthalmol. 2001;119(10):1518–24.

    Article  CAS  PubMed  Google Scholar 

  142. de Smet MD, Vancs VS, Kohler D, Solomon D, Chan CC. Intravitreal chemotherapy for the treatment of recurrent intraocular lymphoma. Br J Ophthalmol. 1999;83(4):448–51.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ozkan EB, Ozcan AA, Alparslan N. Intravitreal injection of methotrexate in an experimental rabbit model: determination of pharmacokinetics. Indian J Ophthalmol. 2011;59(3):197–200.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Frenkel S, Hendler K, Siegal T, Shalom E, Pe'er J. Intravitreal methotrexate for treating vitreoretinal lymphoma: 10 years of experience. Br J Ophthalmol. 2008;92(3):383–8.

    Article  CAS  PubMed  Google Scholar 

  145. Taylor SR, Habot-Wilner Z, Pacheco P, Lightman S. Intravitreal methotrexate in uveitis. Ophthalmology. 2012;119(4):878–9.

    Article  PubMed  Google Scholar 

  146. Ma WL, Hou HA, Hsu YJ, Chen YK, Tang JL, Tsay W, et al. Clinical outcomes of primary intraocular lymphoma patients treated with front-line systemic high-dose methotrexate and intravitreal methotrexate injection. Ann Hematol. 2016;95(4):593–601.

    Article  CAS  PubMed  Google Scholar 

  147. Pleyer U, Thurau SR. Sirolimus for the treatment of noninfectious uveitis. Expert Opin Pharmacother. 2016;17(1):127–35.

    Article  CAS  PubMed  Google Scholar 

  148. Sen HN, Larson TA, Meleth AD, Smith WM, Nussenblatt RB. Subconjunctival sirolimus for the treatment of chronic active anterior uveitis: results of a pilot trial. Am J Ophthalmol. 2012;153(6):1038–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Bhatt N, Dalal M, Tucker W, Obiyor D, Nussenblatt R, Sen HN. Subconjunctival sirolimus in the treatment of autoimmune non-necrotizing anterior scleritis: results of a phase I/II clinical trial. Am J Ophthalmol. 2015;159(3):601–6.

    Article  CAS  PubMed  Google Scholar 

  150. Ibrahim MA, Sepah YJ, Watters A, Bittencourt M, Vigil EM, Do DV, et al. One-year outcomes of the SAVE study: Sirolimus as a therapeutic Approach for uVEitis. Transl Vis Sci Technol. 2015;4(2):4.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Merrill P, Nguyen QD, Clark WL, Wilson L, Valentine ME, Naor J, et al. The SAKURA study, a phase III, multicenter, randomized, double-masked, study of intravitreal injections of DE-109 for the treatment of active, noninfectious uveitis of the posterior segment: baseline ocular disease characteristics. Association for Research and Visual Science Annual Meeting; Orlando, FL, USA; 2014.

    Google Scholar 

  152. Nguyen QD, Merrill PT, Clark WL, Banker AS, Fardeau C, Franco P, et al. Intravitreal sirolimus for noninfectious uveitis: a phase III Sirolimus study Assessing double-masKed Uveitis tReAtment (SAKURA). Ophthalmology. 2016;123(11):2413–23.

    Article  PubMed  Google Scholar 

  153. Dejneka NS, Kuroki AM, Fosnot J, Tang W, Tolentino MJ, Bennett J. Systemic rapamycin inhibits retinal and choroidal neovascularization in mice. Mol Vis. 2004;10:964–72.

    CAS  PubMed  Google Scholar 

  154. Yagasaki R, Nakahara T, Ushikubo H, Mori A, Sakamoto K, Ishii K. Anti-angiogenic effects of mammalian target of rapamycin inhibitors in a mouse model of oxygen-induced retinopathy. Biol Pharm Bull. 2014;37(11):1838–42.

    Article  CAS  PubMed  Google Scholar 

  155. Mudumba S, Bezwada P, Takanaga H, Hosoi K, Tsuboi T, Ueda K, et al. Tolerability and pharmacokinetics of intravitreal sirolimus. J Ocul Pharmacol Ther. 2012;28(5):507–14.

    Article  CAS  PubMed  Google Scholar 

  156. Dugel PU, Blumenkranz MS, Haller JA, Williams GA, Solley WA, Kleinman DM, et al. A randomized, dose-escalation study of subconjunctival and intravitreal injections of sirolimus in patients with diabetic macular edema. Ophthalmology. 2012;119(1):124–31.

    Article  PubMed  Google Scholar 

  157. Petrou PA, Cunningham D, Shimel K, Harrington M, Hammel K, Cukras CA, et al. Intravitreal sirolimus for the treatment of geographic atrophy: results of a phase I/II clinical trial. Invest Ophthalmol Vis Sci. 2015;56(1):330–8.

    Article  CAS  PubMed Central  Google Scholar 

  158. Giganti M, Beer PM, Lemanski N, Hartman C, Schartman J, Falk N. Adverse events after intravitreal infliximab (Remicade). Retina. 2010;30(1):71–80.

    Article  PubMed  Google Scholar 

  159. Pulido JS, Pulido JE, Michet CJ, Vile RG. More questions than answers: a call for a moratorium on the use of intravitreal infliximab outside of a well-designed trial. Retina. 2010;30(1):1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wu L, Hernandez-Bogantes E, Roca JA, Arevalo JF, Barraza K, Lasave AF. Intravitreal tumor necrosis factor inhibitors in the treatment of refractory diabetic macular edema: a pilot study from the Pan-American Collaborative Retina Study Group. Retina. 2011;31(2):298–303.

    Article  CAS  PubMed  Google Scholar 

  161. Androudi S, Tsironi E, Kalogeropoulos C, Theodoridou A, Brazitikos P. Intravitreal adalimumab for refractory uveitis-related macular edema. Ophthalmology. 2010;117(8):1612–6.

    Article  PubMed  Google Scholar 

  162. Farvardin M, Afarid M, Shahrzad S. Long-term effects of intravitreal infliximab for treatment of sight-threatening chronic noninfectious uveitis. J Ocul Pharmacol Ther. 2012;28(6):628–31.

    Article  CAS  PubMed  Google Scholar 

  163. Markomichelakis N, Delicha E, Masselos S, Sfikakis PP. Intravitreal infliximab for sight-threatening relapsing uveitis in Behcet disease: a pilot study in 15 patients. Am J Ophthalmol. 2012;154(3):534–41.e1.

    Article  CAS  PubMed  Google Scholar 

  164. Hamam RN, Barikian AW, Antonios RS, Abdulaal MR, Alameddine RM, El Mollayess G, et al. Intravitreal adalimumab in active noninfectious uveitis: a pilot study. Ocul Immunol Inflamm. 2016;24(3):319–26.

    Google Scholar 

  165. Theodossiadis PG, Liarakos VS, Sfikakis PP, Charonis A, Agrogiannis G, Kavantzas N, et al. Intravitreal administration of the anti-TNF monoclonal antibody infliximab in the rabbit. Graefes Arch Clin Exp Ophthalmol. 2009;247(2):273–81.

    Article  CAS  PubMed  Google Scholar 

  166. Giansanti F, Ramazzotti M, Vannozzi L, Rapizzi E, Fiore T, Iaccheri B, et al. A pilot study on ocular safety of intravitreal infliximab in a rabbit model. Invest Ophthalmol Vis Sci. 2008;49(3):1151–6.

    Article  PubMed  Google Scholar 

  167. Fauser S, Kalbacher H, Alteheld N, Koizumi K, Krohne TU, Joussen AM. Pharmacokinetics and safety of intravitreally delivered etanercept. Graefes Arch Clin Exp Ophthalmol. 2004;242(7):582–6.

    Article  CAS  PubMed  Google Scholar 

  168. Arias L, Caminal JM, Badia MB, Rubio MJ, Catala J, Pujol O. Intravitreal infliximab in patients with macular degeneration who are nonresponders to antivascular endothelial growth factor therapy. Retina. 2010;30(10):1601–8.

    Article  PubMed  Google Scholar 

  169. Flaxel C. Posterior sub-Tenon’s injections. In: Dunn JP, Langer PD, editors. Basic techniques of ophthalmic surgery. San Francisco: American Academy of Ophthalmology; 2009. p. 225–8.

    Google Scholar 

  170. Ideta S, Noda M, Kawamura R, Shinoda K, Suzuki K, Ishida S, et al. Dehiscence of levator aponeurosis in ptosis after sub-Tenon injection of triamcinolone acetonide. Can J Ophthalmol. 2009;44(6):668–72.

    Article  PubMed  Google Scholar 

  171. Lafranco Dafflon M, Tran VT, Guex-Crosier Y, Herbort CP. Posterior sub-Tenon’s steroid injections for the treatment of posterior ocular inflammation: indications, efficacy and side effects. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):289–95.

    Article  CAS  PubMed  Google Scholar 

  172. Smith JR, George RK, Rosenbaum JT. Lower eyelid herniation of orbital fat may complicate periocular corticosteroid injection. Am J Ophthalmol. 2002;133(6):845–7.

    Article  PubMed  Google Scholar 

  173. Bhagat N, Zarbin MA. Intravitreal injections. In: Dunn JP, Langer PD, editors. Basic techniques of ophthalmic surgery. San Francisco: American Academy of Ophthalmology; 2009. p. 229–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyndell Lim .

Editor information

Editors and Affiliations

Appendix 13.1: Summary of Local Ocular Drug Delivery Methods

Appendix 13.1: Summary of Local Ocular Drug Delivery Methods

Subconjunctival Injection (Anterior Sub-Tenon)

Method

  • Anesthesia: topical anesthesia should be achieved with repeated applications of topical anesthetic such as proparacaine and oxybuprocaine. This can be augmented by placing a local anesthetic-soaked pledget on intended injection site for 5 minutes

  • A 1 mL syringe with a 30 g needle is preferred; 27 g needle may be required for triamcinolone

  • Insert the needle bevel toward the globe through the conjunctiva on the superior or inferior bulbar surface at a site that is usually covered by the upper or lower eyelid

  • Inject up to 0.1 mL of medication (typically Kenalog®) to form a small bleb; injections may be placed at multiple sites, up to a total volume to 0.5–1.0 mL. A whitish deposit may be noted, hence the preference to place these injections at a site that would/will be covered by the eyelids

Subconjunctival administration offers an attractive alternative to peri- and intraocular injections as the needle tip is always visible and therefore theoretically safer. Consideration should be made to minimize cosmetic defects such as a visible deposit within the interpalpebral fissure and subconjunctival hemorrhage.

Periocular Triamcinolone (e.g. Kenalog®) Injection (Posterior Sub-Tenon, Orbital Floor, Peribulbar) [169]

There are several approaches to periocular injections. While each technique offers different advantages and risks, all aim to place the drug close to the post-equatorial globe. Retrobulbar injections are rarely performed, particularly in a clinic setting where treatment usually takes place. The most common usage is triamcinolone acetonide 20–40 mg given into the sub-Tenon or orbital floor space.

Anesthesia

Topical anesthesia is required for the sub-Tenon techniques. This can be augmented by the addition of a quick-acting local anesthetic mixed into the syringe containing the corticosteroid. Orbital floor and peribulbar injections typically do not require topical anesthesia.

  • A 3 mL syringe is preferred

  • All injections are given with the needle bevel facing the globe as to minimize engaging the sclera and inadvertent intraocular penetration

Posterior sub-Tenon injections can be delivered by either blunt cannula or sharp needle (Nozik) technique. The technique aims to deposit the drugs close to the macula.

Sub-Tenon Injection (Blunt)

The specialized cannula is a blunt, curved 19 g needle 25 mm long.

  • Ask the patient to look away from the intended site of injection, which is typically inferonasal

  • Blunt curved scissors are used to make a small circumcorneal incision about 8 mm from the limbus

  • Dissect onto bare sclera and into the sub-Tenon space

  • Slide the cannula posteriorly along this track until the hilt is reached

  • Inject the drug. Forceps can be used to provide counter traction and to hold the conjunctival opening closed

Difficulties can be encountered in accessing sub-Tenon space and in preventing regurgitation along injection track.

Sub-Tenon Injection (Nozik)

  1. 1.

    Use a 25- or 27 g 5/8″ needle

  2. 2.

    Ask the patient to look inferonasally

  3. 3.

    Insert the needle bevel toward the globe through the conjunctiva at a point 3–4 mm in front of the superotemporal fornix

  4. 4.

    Advance the needle to the hilt with lateral sweeping motions to maintain close contact with the globe while avoiding scleral penetration and inject up to 1 mL (40 mg)

This technique minimizes unsightly cosmetic blemishes but can result in ptosis [26, 31, 34, 170, 171]. This may result from disinsertion of the levator aponeurosis, direct needle trauma to the levator complex, or muscle fiber atrophy due to the triamcinolone [26, 170]. Subconjunctival hemorrhage and chemosis are rarely experienced.

Peribulbar Injection

Peribulbar injections can be approached transconjunctivally or transcutaneously through the lower eyelid.

  1. 1.

    Use a 25 g 1″ needle and 3 mL syringe

  2. 2.

    Ask the patient to look straight ahead as a gaze directed superonasally brings the optic nerve closer to the orbital rim

  3. 3.

    The needle is inserted at the meeting point between the lateral third and medial two-thirds of the lower orbital rim

  4. 4.

    Direct the needle slightly up-and-in with a side-to-side motion until the needle reaches its hilt

  5. 5.

    1 mL of drug is deposited into the extraconal space

Orbital Floor Injection

Orbital floor injections are favored in some centers as it is believed they have a lower risk of globe perforation. Rarely, herniation of orbital fat following multiple orbital floor injections has been reported [172].

  1. 1.

    Use a 27 g 0.5″ or 1″ needle

  2. 2.

    Ask the patient to look straight ahead

  3. 3.

    The needle is inserted transcutaneously at the meeting point between the lateral third and medial two-thirds of the lower orbital rim

  4. 4.

    Advance the needle directly posteriorly

  5. 5.

    The drug is deposited on the orbital floor

All sharp-needle techniques carry an intrinsic risk of inadvertent globe perforation, which itself increases the risk of intraocular complications such endophthalmitis and retinal tears.

Intravitreal Injection of Triamcinolone [173]

Method

  1. 1.

    Anesthesia: topical anesthesia is required and can be augmented by placing a local anesthetic-soaked pledget on intended injection site for 5 minutes or by a subconjunctival injection of local anesthetic

  2. 2.

    A 1 mL syringe with a 27 g or 30 g 0.5″ needle is preferred

  3. 3.

    Instill povidone-iodine 5% into the conjunctival sac

  4. 4.

    Place an eyelid speculum

  5. 5.

    Ask the patient to look away from the intended site of injection, typically superotemporal

  6. 6.

    Mark the site of injection with calipers: 3.5 mm from the limbus in pseudophakic patients, 4.0 mm in phakic patients

  7. 7.

    Insert the needle approximately halfway into the vitreous cavity, directing the tip toward the optic nerve

  8. 8.

    Inject 0.05–0.1 mL of the medication

  9. 9.

    Check gross visual acuity or perform indirect ophthalmoscopy to ensure adequate central retinal artery circulation

Serious procedure-related complications occur infrequently at <1–5% and include retinal tears, vitreous hemorrhage, and endophthalmitis. Floaters, subconjunctival hemorrhage, and ocular surface irritation are common but benign.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, X.N., Lim, L. (2019). Local Drug Delivery for Noninfectious Uveitis. In: Lin, P., Suhler, E. (eds) Treatment of Non-infectious Uveitis. Springer, Cham. https://doi.org/10.1007/978-3-030-22827-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22827-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22825-5

  • Online ISBN: 978-3-030-22827-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics