Skip to main content

Traumatic Peripheral Nerve Injuries: Experimental Models for Repair and Reconstruction

  • Protocol
  • First Online:
Animal Models of Neurotrauma

Part of the book series: Neuromethods ((NM,volume 149))

Abstract

Peripheral nerve injuries are difficult to treat, and the clinical outcome after surgical repair and reconstruction is still insufficient, particularly concerning recovery of sensory function. To improve the clinical treatment strategies, experimental models are used to systematically examine the mechanisms behind nerve regeneration and assess the improvement of nerve regeneration by introduction of new surgical nerve repair and reconstruction methods (e.g., novel devices made by bioartificial materials). Rat models, where the sciatic nerve has essentially a similar size as a human digital nerve, are widely used to evaluate nerve regeneration with the inherent advantages and disadvantages of the experimental models. Estimations revealing that a large number of diabetic patients will eventually suffer from peripheral nerve injury have motivated development of suitable experimental diabetes models for studying the nerve regeneration process and novel treatment approaches. We have successfully used the Goto-Kakizaki rat model, which shows moderately increased blood sugar closely resembling type 2 diabetes, for assessing the surgical peripheral nerve regeneration potential with and without artificial scaffolds. In order to improve outcome after repair and reconstruction of nerve injuries, one has to have a clear concept concerning how to evaluate novel repair and reconstruction techniques in experimental models before clinical studies can be initiated in an accurate way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noble J, Munro CA, Prasad VS et al (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45(1):116–122

    Article  CAS  Google Scholar 

  2. Asplund M, Nilsson M, Jacobsson A et al (2009) Incidence of traumatic peripheral nerve injuries and amputations in Sweden between 1998 and 2006. Neuroepidemiology 32(3):217–228

    Article  Google Scholar 

  3. Thorsen F, Rosberg HE, Steen Carlsson K et al (2012) Digital nerve injuries: epidemiology, results, costs, and impact on daily life. J Plast Surg Hand Surg 46(3–4):184–190. https://doi.org/10.3109/2000656X.2012.676554

    Article  PubMed  Google Scholar 

  4. Rosberg HE, Carlsson KS, Hojgard S et al (2005) Injury to the human median and ulnar nerves in the forearm--analysis of costs for treatment and rehabilitation of 69 patients in southern Sweden. J Hand Surg (Br) 30(1):35–39

    Article  CAS  Google Scholar 

  5. Dahlin LB, Lundborg G (2001) Use of tubes in peripheral nerve repair. Neurosurg Clin N Am 12(2):341–352

    Article  CAS  Google Scholar 

  6. Haastert-Talini K, Geuna S, Dahlin LB et al (2013) Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials 34(38):9886–9904. https://doi.org/10.1016/j.biomaterials.2013.08.074

    Article  CAS  PubMed  Google Scholar 

  7. Siemers F (2015) Alternativen zur autologen nerventransplantation. Obere Extremität 10:162–167

    Article  Google Scholar 

  8. Lundborg G, Rosen B, Dahlin L et al (2004) Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg (Br) 29(2):100–107

    Article  CAS  Google Scholar 

  9. Weber A, Breidenback WC, Brown RE et al (2000) A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg 106:1036–1045

    Article  CAS  Google Scholar 

  10. Hallgren A, Bjorkman A, Chemnitz A et al (2013) Subjective outcome related to donor site morbidity after sural nerve graft harvesting: a survey in 41 patients. BMC Surg 13:39. https://doi.org/10.1186/1471-2482-13-39

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scherman P, Kanje M, Dahlin LB (2005) Sutures as longitudinal guides for the repair of nerve defects—influence of suture numbers and reconstruction of nerve bifurcations. Restor Neurol Neurosci 23(2):79–85

    PubMed  Google Scholar 

  12. Kvist M, Sondell M, Kanje M et al (2011) Regeneration in, and properties of, extracted peripheral nerve allografts and xenografts. J Plast Surg Hand Surg 45(3):122–128. https://doi.org/10.3109/2000656X.2011.571847

    Article  PubMed  Google Scholar 

  13. Rinker BD, Ingari JV, Greenberg JA et al (2015) Outcomes of short-gap sensory nerve injuries reconstructed with processed nerve allografts from a multicenter registry study. J Reconstr Microsurg 31(5):384–390. https://doi.org/10.1055/s-0035-1549160

    Article  PubMed  Google Scholar 

  14. Chiono V, Tonda-Turo C (2015) Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 131:87–104. https://doi.org/10.1016/j.pneurobio.2015.06.001

    Article  PubMed  Google Scholar 

  15. Johnson PJ, Wood MD, Moore AM et al (2013) Tissue engineered constructs for peripheral nerve surgery. Eur Surg 45(3). https://doi.org/10.1007/s10353-013-0205-0

    Article  Google Scholar 

  16. Gnavi S, Barwig C, Freier T et al (2013) The use of chitosan-based scaffolds to enhance regeneration in the nervous system. Int Rev Neurobiol 109:1–62. https://doi.org/10.1016/B978-0-12-420045-6.00001-8

    Article  PubMed  Google Scholar 

  17. Geuna S, Gnavi S, Perroteau I et al (2013) Tissue engineering and peripheral nerve reconstruction: an overview. Int Rev Neurobiol 108:35–57. https://doi.org/10.1016/B978-0-12-410499-0.00002-2

    Article  CAS  PubMed  Google Scholar 

  18. Harrison RG (1911) On the stereotropism of embryonic cells. Science 34:279–281

    Article  CAS  Google Scholar 

  19. Weiss P (1934) In vitro experiments on the factors determining the course of the outgrowning nerve fier. J Exp Zool 69:393–448

    Article  Google Scholar 

  20. Johansson F, Carlberg P, Danielsen N et al (2006) Axonal outgrowth on nano-imprinted patterns. Biomaterials 27(8):1251–1258

    Article  CAS  Google Scholar 

  21. Tucker N, Stanger JJ, Staiger MP et al (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fibers Fabrics 7(Special issue):63–73

    CAS  Google Scholar 

  22. Sunderland S (1978) Nerves and nerve injuries, 2nd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  23. Dahlin LB, Miyauchi A, Danielsen N et al (1996) Stimulation of nerve regeneration by macrophages in granulation tissue. Rest Neurol Neurosci 9:141–149

    CAS  Google Scholar 

  24. Maripuu A, Björkman A, Björkman-Burtscher IM et al (2012) Reconstruction of sciatic nerve after traumatic injury in humans – factors influencing outcome as related to neurobiological knowledge from animal research. J Brachial Plex Peripher Nerve Inj 7(1):7

    PubMed  PubMed Central  Google Scholar 

  25. Jonsson S, Wiberg R, McGrath AM et al (2013) Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS One 8(2):e56484. https://doi.org/10.1371/journal.pone.0056484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saito H, Dahlin LB (2008) Expression of ATF3 and axonal outgrowth are impaired after delayed nerve repair. BMC Neurosci 9:88

    Article  Google Scholar 

  27. Saito H, Kanje M, Dahlin LB (2009) Delayed nerve repair increases number of caspase 3 stained Schwann cells. Neurosci Lett 456(1):30–33

    Article  CAS  Google Scholar 

  28. de Ruiter GC, Spinner RJ, Verhaagen J et al (2014) Misdirection and guidance of regenerating axons after experimental nerve injury and repair. J Neurosurg 120(2):493–501. https://doi.org/10.3171/2013.8.JNS122300

    Article  PubMed  Google Scholar 

  29. Daly WT, Knight AM, Wang H et al (2013) Comparison and characterization of multiple biomaterial conduits for peripheral nerve repair. Biomaterials 34(34):8630–8639. https://doi.org/10.1016/j.biomaterials.2013.07.086

    Article  CAS  PubMed  Google Scholar 

  30. Brushart TM, Gerber J, Kessens P et al (1998) Contributions of pathway and neuron to preferential motor reinnervation. J Neurosci 18(21):8674–8681

    Article  CAS  Google Scholar 

  31. Madison RD, Archibald SJ, Brushart TM (1996) Reinnervation accuracy of the rat femoral nerve by motor and sensory neurons. J Neurosci 16(18):5698–5703

    Article  CAS  Google Scholar 

  32. Saito H, Kanje M, Dahlin LB (2010) Crossed over repair of the femoral sensory and motor branches influences N-CAM. Neuroreport 21(12):841–845

    Article  CAS  Google Scholar 

  33. Brushart TM, Aspalter M, Griffin JW et al (2013) Schwann cell phenotype is regulated by axon modality and central-peripheral location, and persists in vitro. Exp Neurol 247:272–281. https://doi.org/10.1016/j.expneurol.2013.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomsen NO, Mojaddidi M, Malik RA et al (2009) Biopsy of the posterior interosseous nerve: a low morbidity method for assessment of peripheral nerve disorders. Diabet Med 26(1):100–104

    Article  CAS  Google Scholar 

  35. Stenberg L, Kodama A, Lindwall-Blom C et al (2016) Nerve regeneration in chitosan conduits and in autologous nerve grafts in healthy and in type 2 diabetic Goto-Kakizaki rats. Eur J Neurosci 43(3):463–473. https://doi.org/10.1111/ejn.13068

    Article  PubMed  Google Scholar 

  36. Gonzalez-Perez F, Cobianchi S, Geuna S et al (2015) Tubulization with chitosan guides for the repair of long gap peripheral nerve injury in the rat. Microsurgery 35(4):300–308. https://doi.org/10.1002/micr.22362

    Article  CAS  PubMed  Google Scholar 

  37. Johansson F, Dahlin LB (2014) The multiple silicone tube device, “tubes within a tube,” for multiplication in nerve reconstruction. Biomed Res Int 2014:689127. https://doi.org/10.1155/2014/689127

    Article  PubMed  PubMed Central  Google Scholar 

  38. Faroni A, Smith RJ, Reid AJ (2014) Adipose derived stem cells and nerve regeneration. Neural Regen Res 9(14):1341–1346. https://doi.org/10.4103/1673-5374.137585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brooks DN, Weber RV, Chao JD et al (2012) Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 32(1):1–14. https://doi.org/10.1002/micr.20975

    Article  PubMed  Google Scholar 

  40. Kvist M, Lemplesis V, Kanje M et al (2007) Immunomodulation by costimulation blockade inhibits rejection of nerve allografts. J Peripher Nerv Syst 12(2):83–90

    Article  CAS  Google Scholar 

  41. Sulaiman W, Gordon T (2013) Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 13(1):100–108

    PubMed  PubMed Central  Google Scholar 

  42. Dahlin LB, Coster M, Bjorkman A et al (2012) Axillary nerve injury in young adults—an overlooked diagnosis? Early results of nerve reconstruction and nerve transfers. J Plast Surg Hand Surg 46(3–4):257–261. https://doi.org/10.3109/2000656X.2012.698415

    Article  PubMed  Google Scholar 

  43. Tsuda Y, Kanje M, Dahlin LB (2011) Axonal outgrowth is associated with increased ERK 1/2 activation but decreased caspase 3 linked cell death in Schwann cells after immediate nerve repair in rats. BMC Neurosci 12:12

    Article  Google Scholar 

  44. Hoke A, Gordon T, Zochodne DW et al (2002) A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol 173(1):77–85

    Article  CAS  Google Scholar 

  45. Boyd JG, Gordon T (2003) Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol 183(2):610–619

    Article  CAS  Google Scholar 

  46. Oh SH, Kim JR, Kwon GB et al (2013) Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration. Tissue Eng Part C Methods 19(3):233–243. https://doi.org/10.1089/ten.TEC.2012.0221

    Article  CAS  PubMed  Google Scholar 

  47. Jeffries EM, Wang Y (2012) Biomimetic micropatterned multi-channel nerve guides by templated electrospinning. Biotechnol Bioeng 109(6):1571–1582. https://doi.org/10.1002/bit.24412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jeffries EM, Wang Y (2013) Incorporation of parallel electrospun fibers for improved topographical guidance in 3D nerve guides. Biofabrication 5(3):035015. https://doi.org/10.1088/1758-5082/5/3/035015

    Article  CAS  PubMed  Google Scholar 

  49. Jenkins PM, Laughter MR, Lee DJ et al (2015) A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells. Nanoscale Res Lett 10(1):972. https://doi.org/10.1186/s11671-015-0972-6

    Article  CAS  PubMed  Google Scholar 

  50. Callaghan B, Feldman E (2013) The metabolic syndrome and neuropathy: therapeutic challenges and opportunities. Ann Neurol 74(3):397–403. https://doi.org/10.1002/ana.23986

    Article  CAS  PubMed  Google Scholar 

  51. Yorek MA (2016) Alternatives to the streptozotocin-diabetic rodent. Int Rev Neurobiol 127:89–112. https://doi.org/10.1016/bs.irn.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cinci L, Corti F, Di Cesare Mannelli L et al (2015) Oxidative, metabolic, and apoptotic responses of Schwann cells to high glucose levels. J Biochem Mol Toxicol 29(6):274–279. https://doi.org/10.1002/jbt.21695

    Article  CAS  PubMed  Google Scholar 

  53. Gumy LF, Bampton ET, Tolkovsky AM (2008) Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci 37:298–311

    Article  CAS  Google Scholar 

  54. Islam MS (2013) Animal models of diabetic neuropathy: progress since 1960s. J Diabetes Res 2013:149452. https://doi.org/10.1155/2013/149452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Radenkovic M, Stojanovic M, Prostran M (2016) Experimental diabetes induced by alloxan and streptozotocin: the current state of the art. J Pharmacol Toxicol Methods 78:13–31. https://doi.org/10.1016/j.vascn.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  56. Stenberg L, Kanje M, Martensson L et al (2011) Injury-induced activation of ERK 1/2 in the sciatic nerve of healthy and diabetic rats. Neuroreport 22(2):73–77

    Article  CAS  Google Scholar 

  57. Stenberg L, Kanje M, Dolezal K et al (2012) Expression of activating transcription factor 3 (ATF 3) and caspase 3 in Schwann cells and axonal outgrowth after sciatic nerve repair in diabetic BB rats. Neurosci Lett 515(1):34–38. https://doi.org/10.1016/j.neulet.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  58. Mohseni S (2014) Neurologic damage in hypoglycemia. Handb Clin Neurol 126:513–532. https://doi.org/10.1016/B978-0-444-53480-4.00036-9

    Article  PubMed  Google Scholar 

  59. Zochodne DW, Guo GF, Magnowski B et al (2007) Regenerative failure of diabetic nerves bridging transection injuries. Diabetes Metab Res Rev 23(6):490–496. https://doi.org/10.1002/dmrr.716

    Article  PubMed  Google Scholar 

  60. Portha B, Lacraz G, Kergoat M et al (2009) The GK rat beta-cell: a prototype for the diseased human beta-cell in type 2 diabetes? Mol Cell Endocrinol 297(1–2):73–85. https://doi.org/10.1016/j.mce.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  61. Akash MS, Rehman K, Chen S (2013) Goto-Kakizaki rats: its suitability as non-obese diabetic animal model for spontaneous type 2 diabetes mellitus. Curr Diabetes Rev 9(5):387–396

    Article  CAS  Google Scholar 

  62. Stenberg L, Dahlin LB (2014) Gender differences in nerve regeneration after sciatic nerve injury and repair in healthy and in type 2 diabetic Goto-Kakizaki rats. BMC Neurosci 15:107. https://doi.org/10.1186/1471-2202-15-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meyer C, Stenberg L, Gonzalez-Perez F et al (2016) Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials 76:33–51. https://doi.org/10.1016/j.biomaterials.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  64. Dahlin LB, Anagnostaki L, Lundborg G (2001) Tissue response to silicone tubes used to repair human median and ulnar nerves. Scand J Plast Reconstr Surg Hand Surg 35(1):29–34

    Article  CAS  Google Scholar 

  65. Isaacs J, Browne T (2014) Overcoming short gaps in peripheral nerve repair: conduits and human acellular nerve allograft. Hand (N Y) 9(2):131–137. https://doi.org/10.1007/s11552-014-9601-6

    Article  Google Scholar 

  66. Wiberg M, Terenghi G (2003) Will it be possible to produce peripheral nerves? Surg Technol Int 11:303–310

    PubMed  Google Scholar 

  67. Rosberg HE, Dahlin LB (2004) Epidemiology of hand injuries in a middle-sized city in southern Sweden: a retrospective comparison of 1989 and 1997. Scand J Plast Reconstr Surg Hand Surg 38(6):347–355

    Article  Google Scholar 

  68. Pesaresi M, Maschi O, Giatti S et al (2010) Sex differences in neuroactive steroid levels in the nervous system of diabetic and non-diabetic rats. Horm Behav 57(1):46–55. https://doi.org/10.1016/j.yhbeh.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  69. Rosén B, Lundborg G, Dahlin LB et al (1994) Nerve repair: correlation of restitution of functional sensibility with specific cognitive capacities. J Hand Surg 19B(4):452–458

    Article  Google Scholar 

  70. Cederlund RI, Ramel E, Rosberg HE et al (2011) Outcome and clinical changes in patients 3, 6, 12 months after a severe or major hand injury – can sense of coherence be an indicator for rehabilitation focus? BMC Musculoskelet Disord 11(1):286

    Article  Google Scholar 

Download references

Acknowledgements

The projects performed by the authors have received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No. [278612 (BIOHYBRID)], the Swedish Research Council (Medicine), Lund University, Sydvästra Skånes Diabetesförening, and Region Skåne (Skåne University Malmö, Lund), Sweden.

We acknowledge our friend and mentor Professor Martin Kanje, Ph.D., who died in 2013. Martin should be remembered as an outstanding scientist in the field of mechanisms in nerve regeneration and improvement of outcome. He will continue to be an inspiration in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars B. Dahlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dahlin, L.B., Stenberg, L., Johansson, U.E., Johansson, F. (2019). Traumatic Peripheral Nerve Injuries: Experimental Models for Repair and Reconstruction. In: Risling, M., Davidsson, J. (eds) Animal Models of Neurotrauma. Neuromethods, vol 149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9711-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9711-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9709-1

  • Online ISBN: 978-1-4939-9711-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics