Skip to main content
Log in

Tissue engineered constructs for peripheral nerve surgery

  • Main Topic
  • Published:
European Surgery Aims and scope Submit manuscript

Summary

Background

Tissue engineering has been defined as “an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump.

Methods

A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal.

Results

Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons.

Conclusions

The field of tissue engineering should consider its challenge to not only meet the autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kouyoumdjian JA. Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve. 2006;34(6):785–8.

    Article  PubMed  Google Scholar 

  2. Seddon HJ, Medawar PB, Smith H. Rate of regeneration of peripheral nerves in man. J Physiol. 1943;102(2):191–215.

    PubMed  CAS  Google Scholar 

  3. Xu QG, et al. Motoneuron survival after chronic and sequential peripheral nerve injuries in the rat. J Neurosurg. 2010;112(4):890–9.

    Article  PubMed  Google Scholar 

  4. Schmalbruch H. Loss of sensory neurons after sciatic nerve section in the rat. Anat Rec. 1987;219(3):323–9.

    Article  PubMed  CAS  Google Scholar 

  5. McKay Hart A, et al. Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: timecourse of cell death and elimination. Exp Brain Res. 2002;142(3):308–18.

    Article  PubMed  Google Scholar 

  6. Terenghi G, Hart A, Wiberg M. The nerve injury and the dying neurons: diagnosis and prevention. J Hand Surg Eur Vol. 2011;36(9):730–4.

    PubMed  Google Scholar 

  7. West CA, et al. Sensory neurons of the human brachial plexus: a quantitative study employing optical fractionation and in vivo volumetric magnetic resonance imaging. Neurosurgery. 2012;70(5):1183–94.

    Article  PubMed  Google Scholar 

  8. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14(1–2):67–116.

    Article  PubMed  CAS  Google Scholar 

  9. Beuche W, Friede RL. The role of nonresident cells in Wallerian degeneration. J Neurocytol. 1984;13(5):767–96.

    Article  PubMed  CAS  Google Scholar 

  10. Scheidt P, Friede RL. Myelin phagocytosis in Wallerian degeneration. Properties of millipore diffusion chambers and immunohistochemical identification of cell populations. Acta Neuropathol. 1987;75(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  11. Bruck W. The role of macrophages in Wallerian degeneration. Brain Pathol. 1997;7(2):741–52.

    Article  PubMed  CAS  Google Scholar 

  12. Witzel C, Rohde C, Brushart TM. Pathway sampling by regenerating peripheral axons. J Comp Neurol. 2005;485(3):183–90.

    Article  PubMed  Google Scholar 

  13. Millesi H, Meissl G, Berger A. Further experience with interfascicular grafting of the median, ulnar, and radial nerves. J Bone Joint Surg Am. 1976;58(2):209–18.

    PubMed  CAS  Google Scholar 

  14. Millesi H. Peripheral nerve injuries. Nerve sutures and nerve grafting. Scand J Plast Reconstr Surg Suppl. 1982;19:25–37.

    CAS  Google Scholar 

  15. de Medinaceli L, Wyatt RJ, Freed WJ. Peripheral nerve reconnection: mechanical, thermal, and ionic conditions that promote the return of function. Exp Neurol. 1983;81(2):469–87.

    Article  PubMed  Google Scholar 

  16. Millesi H. Peripheral nerve repair: terminology, questions, and facts. J Reconstr Microsurg. 1985;2(1):21–31.

    Article  PubMed  CAS  Google Scholar 

  17. Chiu DT, Ishii C. Management of peripheral nerve injuries. Orthop Clin North Am. 1986;17(3):365–73.

    PubMed  CAS  Google Scholar 

  18. Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26(2):151–60.

    Article  PubMed  Google Scholar 

  19. Meek MF, Coert JH. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J Reconstr Microsurg. 2002;18(2):97–109.

    Article  PubMed  CAS  Google Scholar 

  20. Evans GR. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec. 2001;263(4):396–404.

    Article  PubMed  CAS  Google Scholar 

  21. Madduri S, Gander B. Growth factor delivery systems and repair strategies for damaged peripheral nerves. J Control Release. 2012;161(2):274–82.

    Article  PubMed  CAS  Google Scholar 

  22. Lundborg G, Hansson HA. Regeneration of peripheral nerve through a preformed tissue space. Preliminary observations on the reorganization of regenerating nerve fibres and perineurium. Brain Res. 1979;178(2–3):573–6.

    Article  PubMed  CAS  Google Scholar 

  23. Lundborg G, Hansson HA. Nerve regeneration through preformed pseudosynovial tubes. A preliminary report of a new experimental model for studying the regeneration and reorganization capacity of peripheral nerve tissue. J Hand Surg Am. 1980;5(1):35–8.

    PubMed  CAS  Google Scholar 

  24. Lundborg G, et al. Reorganization and orientation of regenerating nerve fibres, perineurium, and epineurium in preformed mesothelial tubes—an experimental study on the sciatic nerve of rats. J Neurosci Res. 1981;6(3):265–81.

    Article  PubMed  CAS  Google Scholar 

  25. Lundborg G, et al. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol. 1982;76(2):361–75.

    Article  PubMed  CAS  Google Scholar 

  26. Merle M, et al. Complications from silicon-polymer intubulation of nerves. Microsurgery. 1989;10(2):130–3.

    Article  PubMed  CAS  Google Scholar 

  27. Dellon AL. Use of a silicone tube for the reconstruction of a nerve injury. J Hand Surg Br. 1994;19(3):271–2.

    Article  PubMed  CAS  Google Scholar 

  28. Battiston B, et al. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25(4):258–67.

    Article  PubMed  Google Scholar 

  29. Hadlock T, et al. A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg. 1998;124(10):1081–6.

    PubMed  CAS  Google Scholar 

  30. Nicoli Aldini N, et al. Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves. Biomaterials. 1996;17(10):959–62.

    Article  PubMed  CAS  Google Scholar 

  31. Archibald SJ, et al. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol. 1991;306(4):685–96.

    Article  PubMed  CAS  Google Scholar 

  32. Li ST, et al. Peripheral nerve repair with collagen conduits. Clin Mater. 1992;9(3–4):195–200.

    Article  PubMed  CAS  Google Scholar 

  33. Whitworth IH, et al. Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. J Hand Surg Br. 1995;20(4):429–36.

    Article  PubMed  CAS  Google Scholar 

  34. Kalbermatten DF, et al. New fibrin conduit for peripheral nerve repair. J Reconstr Microsurg. 2009;25(1):27–33.

    Article  PubMed  Google Scholar 

  35. Pfister BJ, et al. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng. 2011;39(2):81–124.

    Article  PubMed  Google Scholar 

  36. Lundborg G, Dahlin LB, Danielsen N. Ulnar nerve repair by the silicone chamber technique. Case report. Scand J Plast Reconstr Surg Hand Surg. 1991;25(1):79–82.

    Article  PubMed  CAS  Google Scholar 

  37. Lundborg G, et al. Tubular repair of the median nerve in the human forearm. Preliminary findings. J Hand Surg Br. 1994;19(3):273–6.

    Article  PubMed  CAS  Google Scholar 

  38. Lundborg G, et al. Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study. J Hand Surg Am. 1997;22(1):99–106.

    Article  PubMed  CAS  Google Scholar 

  39. Lundborg G, et al. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg Br. 2004;29(2):100–7.

    Article  PubMed  CAS  Google Scholar 

  40. Moore AM, et al. Limitations of conduits in peripheral nerve repairs. Hand (N Y). 2009;4(2):180–6.

    Article  Google Scholar 

  41. Mackinnon SE. Technical use of synthetic conduits for nerve repair. J Hand Surg Am. 2011;36(1):183.

    Article  PubMed  Google Scholar 

  42. Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury. 2012;43(5):553–72.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson PJ, et al. Nerve endoneurial microstructure facilitates uniform distribution of regenerative fibers: a post hoc comparison of midgraft nerve fiber densities. J Reconstr Microsurg. 2011;27(2):83–90.

    Article  PubMed  Google Scholar 

  44. Lloyd BM, et al. Use of motor nerve material in peripheral nerve repair with conduits. Microsurgery. 2007;27(2):138–45.

    Article  PubMed  Google Scholar 

  45. Lundborg G, et al. Nerve regeneration across an extended gap: a neurobiological view of nerve repair and the possible involvement of neuronotrophic factors. J Hand Surg Am. 1982;7(6):580–7.

    PubMed  CAS  Google Scholar 

  46. Madison RD, et al. Peripheral nerve regeneration with entubulation repair: comparison of biodegradeable nerve guides versus polyethylene tubes and the effects of a laminin-containing gel. Exp Neurol. 1987;95(2):378–90.

    Article  PubMed  CAS  Google Scholar 

  47. Madison RD, Da Silva CF, Dikkes P. Entubulation repair with protein additives increases the maximum nerve gap distance successfully bridged with tubular prostheses. Brain Res. 1988;447(2):325–34.

    Article  PubMed  CAS  Google Scholar 

  48. Madison RD, Archibald SJ. Point sources of Schwann cells result in growth into a nerve entubulation repair site in the absence of axons: effects of freeze-thawing. Exp Neurol. 1994;128(2):266–75.

    Article  PubMed  CAS  Google Scholar 

  49. Williams LR. Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. Neurochem Res. 1987;12(10):851–60.

    Article  PubMed  CAS  Google Scholar 

  50. Wood MD, Sakiyama-Elbert SE. Release rate controls biological activity of nerve growth factor released from fibrin matrices containing affinity-based delivery systems. J Biomed Mater Res A. 2008;84(2):300–12.

    PubMed  Google Scholar 

  51. Wood MD, Borschel GH, Sakiyama-Elbert SE. Controlled release of glial-derived neurotrophic factor from fibrin matrices containing an affinity-based delivery system. J Biomed Mater Res A. 2009;89(4):909–18.

    PubMed  Google Scholar 

  52. Wood MD, et al. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater. 2009;5(4):959–68.

    Article  PubMed  CAS  Google Scholar 

  53. Wood MD, et al. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol Bioeng. 2010;106(6):970–9.

    Article  PubMed  CAS  Google Scholar 

  54. Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol. 1994;43(3):187–233.

    Article  PubMed  CAS  Google Scholar 

  55. Tung TH. Tacrolimus (FK506): safety and applications in reconstructive surgery. Hand (N Y). 2010;5(1):1–8.

    Article  Google Scholar 

  56. Mackinnon SE, et al. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001;107(6):1419–29.

    Article  PubMed  CAS  Google Scholar 

  57. Hall S. Axonal regeneration through acellular muscle grafts. J Anat. 1997;190(Pt 1):57–71.

    Article  PubMed  Google Scholar 

  58. Glasby MA, et al. Regeneration of the sciatic nerve in rats. The effect of muscle basement membrane. J Bone Joint Surg Br. 1986;68(5):829–33.

    PubMed  CAS  Google Scholar 

  59. Glasby MA, et al. Degenerated muscle grafts used for peripheral nerve repair in primates. J Hand Surg Br. 1986;11(3):347–51.

    Article  PubMed  CAS  Google Scholar 

  60. Glasby MA, et al. The dependence of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane. J Neurocytol. 1986;15(4):497–510.

    Article  PubMed  CAS  Google Scholar 

  61. Meek MF, et al. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-epsilon-CL) nerve guide filled with modified denatured muscle tissue. Biomaterials. 2001;22(10):1177–85.

    Article  PubMed  CAS  Google Scholar 

  62. Wood MD, et al. Outcome measures of peripheral nerve regeneration. Ann Anat. 2011;193(4):321–33.

    Article  PubMed  Google Scholar 

  63. Szynkaruk M, et al. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng Part B Rev. 2013;19(1):83–96.

    Article  PubMed  CAS  Google Scholar 

  64. Mackinnon SE, et al. The peripheral nerve allograft: an assessment of regeneration in the immunosuppressed host. Plast Reconstr Surg. 1987;79(3):436–46.

    Article  PubMed  CAS  Google Scholar 

  65. Ide C, Osawa T, Tohyama K. Nerve regeneration through allogeneic nerve grafts, with special reference to the role of the Schwann cell basal lamina. Prog Neurobiol. 1990;34(1):1–38.

    Article  PubMed  CAS  Google Scholar 

  66. Mackinnon SE, et al. Peripheral nerve allograft: an immunological assessment of pretreatment methods. Neurosurgery. 1984;14(2):167–71.

    Article  PubMed  CAS  Google Scholar 

  67. Mackinnon SE, et al. Peripheral nerve allograft: an assessment of regeneration across pretreated nerve allografts. Neurosurgery. 1984;15(5):690–3.

    Article  PubMed  CAS  Google Scholar 

  68. Gulati AK, Cole GP. Nerve graft immunogenicity as a factor determining axonal regeneration in the rat. J Neurosurg. 1990;72(1):114–22.

    Article  PubMed  CAS  Google Scholar 

  69. Evans PJ, et al. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve. 1998;21(11):1507–22.

    Article  PubMed  CAS  Google Scholar 

  70. Hudson TW, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 2004;10(11–12):1641–51.

    Article  PubMed  CAS  Google Scholar 

  71. Hess JR, et al. Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. Plast Reconstr Surg. 2007;119(1):246–59.

    Article  PubMed  CAS  Google Scholar 

  72. Moradzadeh A, et al. The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol. 2008;212(2):370–6.

    Article  PubMed  Google Scholar 

  73. Zalewski AA, Gulati AK. Evaluation of histocompatibility as a factor in the repair of nerve with a frozen nerve allograft. J Neurosurg. 1982;56(4):550–4.

    Article  PubMed  CAS  Google Scholar 

  74. Gulati AK, Cole GP. Immunogenicity and regenerative potential of acellular nerve allografts to repair peripheral nerve in rats and rabbits. Acta Neurochir (Wien). 1994;126(2–4):158–64.

    Article  PubMed  CAS  Google Scholar 

  75. Osawa T, Tohyama K, Ide C. Allogeneic nerve grafts in the rat, with special reference to the role of Schwann cell basal laminae in nerve regeneration. J Neurocytol. 1990;19(6):833–49.

    Article  PubMed  CAS  Google Scholar 

  76. Danielsen N, et al. Predegeneration enhances regeneration into acellular nerve grafts. Brain Res. 1995;681(1–2):105–8.

    Article  PubMed  Google Scholar 

  77. Johnson PC, et al. Preparation of cell-free extracellular matrix from human peripheral nerve. Muscle Nerve. 1982;5(4):335–44.

    Article  PubMed  CAS  Google Scholar 

  78. Levi AD, et al. Cold storage of peripheral nerves: an in vitro assay of cell viability and function. Glia. 1994;10(2):121–31.

    Article  PubMed  CAS  Google Scholar 

  79. Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res. 1998;795(1–2):44–54.

    Article  PubMed  CAS  Google Scholar 

  80. Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004;10(9–10):1346–58.

    PubMed  CAS  Google Scholar 

  81. Fox IK, et al. Prolonged cold-preservation of nerve allografts. Muscle Nerve. 2005;31(1):59–69.

    Article  PubMed  Google Scholar 

  82. Yang LJ, et al. Sialidase enhances spinal axon outgrowth in vivo. Proc Natl Acad Sci U S A. 2006;103(29):11057–62.

    Article  PubMed  CAS  Google Scholar 

  83. Graham JB, et al. Chondroitinase applied to peripheral nerve repair averts retrograde axonal regeneration. Exp Neurol. 2007;203(1):185–95.

    Article  PubMed  CAS  Google Scholar 

  84. Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol. 2007;207(1):163–70.

    Article  PubMed  CAS  Google Scholar 

  85. Whitlock EL, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99.

    Google Scholar 

  86. Moore AM, et al. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 2011;44(2):221–34.

    Article  PubMed  Google Scholar 

  87. Santosa KB, et al. Nerve allografts supplemented with Schwann cells overexpressing glial-cell-line-derived neurotrophic factor. Muscle Nerve. 2013;47(2):213–23.

    Article  PubMed  CAS  Google Scholar 

  88. Lai C. Peripheral glia: Schwann cells in motion. Curr Biol. 2005;15(9):R332–4.

    Article  PubMed  CAS  Google Scholar 

  89. Lyons DA, et al. erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr Biol. 2005;15(6):513–24.

    Article  PubMed  CAS  Google Scholar 

  90. Kazakova N, et al. A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol. 2006;297(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  91. Martini R, Xin Y, Schachner M. Restricted localization of L1 and N-CAM at sites of contact between Schwann cells and neurites in culture. Glia. 1994;10(1):70–4.

    Article  PubMed  CAS  Google Scholar 

  92. Akassoglou K, et al. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron. 2002;33(6):861–75.

    Article  PubMed  CAS  Google Scholar 

  93. Mosahebi A, et al. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol. 2002;173(2):213–23.

    Article  PubMed  CAS  Google Scholar 

  94. Bunge RP, Bunge MB, Eldridge CF. Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci. 1986;9:305–28.

    Article  PubMed  CAS  Google Scholar 

  95. Friedman B, et al. Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron. 1992;9(2):295–305.

    Article  PubMed  CAS  Google Scholar 

  96. Bunge RP. The role of the Schwann cell in trophic support and regeneration. J Neurol. 1994;242(1 Suppl 1):S19–21.

    Article  PubMed  CAS  Google Scholar 

  97. Levi AD, Bunge RP. Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol. 1994;130(1):41–52.

    Article  PubMed  CAS  Google Scholar 

  98. Araki T, Milbrandt J. Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron. 1996;17(2):353–61.

    Article  PubMed  CAS  Google Scholar 

  99. Hall SM. The effect of inhibiting Schwann cell mitosis on the reinnervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol Appl Neurobiol. 1986;12(4):401–14.

    Article  PubMed  CAS  Google Scholar 

  100. Hall SM. Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol Appl Neurobiol. 1986;12(1):27–46.

    Article  PubMed  CAS  Google Scholar 

  101. Wood PM. Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 1976;115(3):361–75.

    Article  PubMed  CAS  Google Scholar 

  102. Brockes JP, Fields KL, Raff MC. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979;165(1):105–18.

    Article  PubMed  CAS  Google Scholar 

  103. Paino CL, et al. Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells. J Neurocytol. 1994;23(7):433–52.

    Article  PubMed  CAS  Google Scholar 

  104. Fortun J, Hill CE, Bunge MB. Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett. 2009;456(3):124–32.

    Article  PubMed  CAS  Google Scholar 

  105. Guenard V, et al. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci. 1992;12(9):3310–20.

    PubMed  CAS  Google Scholar 

  106. Kim DH, et al. Labeled Schwann cell transplants versus sural nerve grafts in nerve repair. J Neurosurg. 1994;80(2):254–60.

    Article  PubMed  CAS  Google Scholar 

  107. Levi AD, et al. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci. 1994;14(3 Pt 1):1309–19.

    PubMed  CAS  Google Scholar 

  108. Ogden MA, et al. Safe injection of cultured Schwann cells into peripheral nerve allografts. Microsurgery. 2000;20(7):314–23.

    Article  PubMed  CAS  Google Scholar 

  109. Brenner MJ, et al. Effects of Schwann cells and donor antigen on long-nerve allograft regeneration. Microsurgery. 2005;25(1):61–70.

    Article  PubMed  Google Scholar 

  110. Fox IK, et al. Schwann cell injection of cold-preserved nerve allografts. Microsurgery. 2005;25(6):502–7.

    Article  PubMed  Google Scholar 

  111. Hu J, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol. 2007;204(2):658–66.

    Article  PubMed  Google Scholar 

  112. Aszmann OC, et al. Bridging critical nerve defects through an acellular homograft seeded with autologous Schwann cells obtained from a regeneration neuroma of the proximal stump. J Reconstr Microsurg. 2008;24(3):151–8.

    Article  PubMed  Google Scholar 

  113. Jessen KR, Mirsky R, Morgan L. Axonal signals regulate the differentiation of non-myelin-forming Schwann cells: an immunohistochemical study of galactocerebroside in transected and regenerating nerves. J Neurosci. 1987;7(10):3362–9.

    PubMed  CAS  Google Scholar 

  114. Seilheimer B, Schachner M. Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J Cell Biol. 1988;107(1):341–51.

    Article  PubMed  CAS  Google Scholar 

  115. Acheson A, et al. Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron. 1991;7(2):265–75.

    Article  PubMed  CAS  Google Scholar 

  116. Bunge RP. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol. 1993;3(5):805–9.

    Article  PubMed  CAS  Google Scholar 

  117. Xu XM, et al. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol. 1995;351(1):145–60.

    Article  PubMed  CAS  Google Scholar 

  118. Li Y, Raisman G. Integration of transplanted cultured Schwann cells into the long myelinated fiber tracts of the adult spinal cord. Exp Neurol. 1997;145(2 Pt 1):397–411.

    Article  PubMed  CAS  Google Scholar 

  119. Fansa H, et al. Successful implantation of Schwann cells in acellular muscles. J Reconstr Microsurg. 1999;15(1):61–5.

    Article  PubMed  CAS  Google Scholar 

  120. Morrissey TK, Kleitman N, Bunge RP. Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J Neurosci. 1991;11(8):2433–42.

    PubMed  CAS  Google Scholar 

  121. Levi AD, et al. The influence of heregulins on human Schwann cell proliferation. J Neurosci. 1995;15(2):1329–40.

    PubMed  CAS  Google Scholar 

  122. Mathon NF, et al. Lack of replicative senescence in normal rodent glia. Science. 2001;291(5505):872–5.

    Article  PubMed  CAS  Google Scholar 

  123. Emery E, et al. Assessment of the malignant potential of mitogen stimulated human Schwann cells. J Peripher Nerv Syst. 1999;4(2):107–16.

    PubMed  CAS  Google Scholar 

  124. Atkins S, et al. Scarring impedes regeneration at sites of peripheral nerve repair. Neuroreport. 2006;17(12):1245–9.

    Article  PubMed  CAS  Google Scholar 

  125. Needham LK, Tennekoon GI, McKhann GM. Selective growth of rat Schwann cells in neuron- and serum-free primary culture. J Neurosci. 1987;7(1):1–9.

    PubMed  CAS  Google Scholar 

  126. Levi AD. Characterization of the technique involved in isolating Schwann cells from adult human peripheral nerve. J Neurosci Methods. 1996;68(1):21–6.

    Article  PubMed  CAS  Google Scholar 

  127. Keilhoff G, et al. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits. J Neurosci Methods. 1999;89(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  128. Verdu E, et al. Expansion of adult Schwann cells from mouse predegenerated peripheral nerves. J Neurosci Methods. 2000;99(1–2):111–7.

    Article  PubMed  CAS  Google Scholar 

  129. Calderon-Martinez D, et al. Schwann cell-enriched cultures from adult human peripheral nerve: a technique combining short enzymatic dissociation and treatment with cytosine arabinoside (Ara-C). J Neurosci Methods. 2002;114(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  130. Vroemen M, Weidner N. Purification of Schwann cells by selection of p75 low affinity nerve growth factor receptor expressing cells from adult peripheral nerve. J Neurosci Methods. 2003;124(2):135–43.

    Article  PubMed  CAS  Google Scholar 

  131. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  PubMed  CAS  Google Scholar 

  132. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    Article  PubMed  CAS  Google Scholar 

  133. Itskovitz-Eldor J, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.

    PubMed  CAS  Google Scholar 

  134. Nussbaum J, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. Faseb J. 2007;21(7):1345–57.

    Article  PubMed  CAS  Google Scholar 

  135. Amariglio N, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029.

    Article  PubMed  CAS  Google Scholar 

  136. Bain G, et al. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995;168(2):342–57.

    Article  PubMed  CAS  Google Scholar 

  137. Cui L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26(5):1356–65.

    Article  PubMed  CAS  Google Scholar 

  138. Willerth SM, et al. The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells. 2007;25(9):2235–44.

    Article  PubMed  CAS  Google Scholar 

  139. Ziegler L, et al. Efficient generation of Schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev. 2011;7(2):394–403.

    Article  PubMed  Google Scholar 

  140. Liu Q, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl Med. 2012;1(4):266–78.

    Article  PubMed  CAS  Google Scholar 

  141. Lee EJ, et al. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials. 2012;33(29):7039–46.

    Article  PubMed  CAS  Google Scholar 

  142. Johnson PJ, et al. Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter. 2010;6(20):5127–37.

    Article  PubMed  CAS  Google Scholar 

  143. Dawson TM, et al. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci U S A. 1993;90(21):9808–12.

    Article  PubMed  CAS  Google Scholar 

  144. Gold BG, Katoh K, Storm-Dickerson T. The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J Neurosci. 1995;15(11):7509–16.

    PubMed  CAS  Google Scholar 

  145. Madsen JR, et al. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Exp Neurol. 1998;154(2):673–83.

    Article  PubMed  CAS  Google Scholar 

  146. Doolabh VB, Mackinnon SE. FK506 accelerates functional recovery following nerve grafting in a rat model. Plast Reconstr Surg. 1999;103(7):1928–36.

    Article  PubMed  CAS  Google Scholar 

  147. Gold BG. FK506 and the role of the immunophilin FKBP-52 in nerve regeneration. Drug Metab Rev. 1999;31(3):649–63.

    Article  PubMed  CAS  Google Scholar 

  148. Lee M, et al. FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle Nerve. 2000;23(4):633–40.

    Article  PubMed  CAS  Google Scholar 

  149. Feng FY, et al. FK506 rescues peripheral nerve allografts in acute rejection. J Neurotrauma. 2001;18(2):217–29.

    Article  PubMed  CAS  Google Scholar 

  150. Chunasuwankul R, et al. Low dose discontinued FK506 treatment enhances peripheral nerve regeneration. Int Surg. 2002;87(4):274–8.

    PubMed  Google Scholar 

  151. Udina E, et al. Bimodal dose-dependence of FK506 on the rate of axonal regeneration in mouse peripheral nerve. Muscle Nerve. 2002;26(3):348–55.

    Article  PubMed  CAS  Google Scholar 

  152. Sobol JB, et al. Effects of delaying FK506 administration on neuroregeneration in a rodent model. J Reconstr Microsurg. 2003;19(2):113–8.

    Article  PubMed  Google Scholar 

  153. Udina E, et al. FK506 enhances reinnervation by regeneration and by collateral sprouting of peripheral nerve fibers. Exp Neurol. 2003;183(1):220–31.

    Article  PubMed  CAS  Google Scholar 

  154. Udina E, Gold BG, Navarro X. Comparison of continuous and discontinuous FK506 administration on autograft or allograft repair of sciatic nerve resection. Muscle Nerve. 2004;29(6):812–22.

    Article  PubMed  CAS  Google Scholar 

  155. Brenner MJ, et al. FK506 and anti-CD40 ligand in peripheral nerve allotransplantation. Restor Neurol Neurosci. 2005;23(3–4):237–49.

    PubMed  CAS  Google Scholar 

  156. Jensen JN, et al. Effect of FK506 on peripheral nerve regeneration through long grafts in inbred swine. Ann Plast Surg. 2005;54(4):420–7.

    Article  PubMed  CAS  Google Scholar 

  157. Sun HH, et al. Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience. 2012;223:114–23.

    Article  PubMed  CAS  Google Scholar 

  158. Yan Y, et al. Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair. 2012;26(6):570–80.

    Article  PubMed  Google Scholar 

  159. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  PubMed  CAS  Google Scholar 

  160. Sheng Z, et al. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen. 2009;17(3):427–35.

    Article  PubMed  Google Scholar 

  161. Orlic D, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–5.

    Article  PubMed  CAS  Google Scholar 

  162. Oswald J, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.

    Article  PubMed  Google Scholar 

  163. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96(19):10711–6.

    Article  PubMed  CAS  Google Scholar 

  164. Hofstetter CP, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A. 2002;99(4):2199–204.

    Article  PubMed  CAS  Google Scholar 

  165. Jiang Y, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

    Article  PubMed  CAS  Google Scholar 

  166. Tohill M, et al. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3.

    Article  PubMed  CAS  Google Scholar 

  167. Shah NM, et al. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell. 1994;77(3):349–60.

    Article  PubMed  CAS  Google Scholar 

  168. Caddick J, et al. Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia. 2006;54(8):840–9.

    Article  PubMed  Google Scholar 

  169. Keilhoff G, et al. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol. 2006;85(1):11–24.

    Article  PubMed  CAS  Google Scholar 

  170. Keilhoff G, et al. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng. 2006;12(6):1451–65.

    Article  PubMed  CAS  Google Scholar 

  171. Keilhoff G, et al. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006;26(7–8):1235–52.

    PubMed  Google Scholar 

  172. Mahay D, Terenghi G, Shawcross SG. Schwann cell mediated trophic effects by differentiated mesenchymal stem cells. Exp Cell Res. 2008;314(14):2692–701.

    Article  PubMed  CAS  Google Scholar 

  173. Mahay D, Terenghi G, Shawcross SG. Growth factors in mesenchymal stem cells following glial-cell differentiation. Biotechnol Appl Biochem. 2008;51(Pt 4):167–76.

    Article  PubMed  CAS  Google Scholar 

  174. Brohlin M, et al. Characterization of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res. 2009;64(1):41–9.

    Article  PubMed  Google Scholar 

  175. Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. Faseb J. 2004;18(9):980–2.

    PubMed  CAS  Google Scholar 

  176. Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells—a critical review. APMIS. 2005;113(11–12):831–44.

    Article  PubMed  Google Scholar 

  177. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25(11):2896–2902.

    Article  PubMed  Google Scholar 

  178. Shea GK, et al. Bone marrow-derived Schwann cells achieve fate commitment—a prerequisite for remyelination therapy. Exp Neurol. 2010;224(2):448–58.

    Article  PubMed  CAS  Google Scholar 

  179. Hollenberg CH, Vost A. Regulation of DNA synthesis in fat cells and stromal elements from rat adipose tissue. J Clin Invest. 1969;47(11):2485–98.

    Article  PubMed  CAS  Google Scholar 

  180. Van RL, Bayliss CE, Roncari DA. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin Invest. 1976;58(3):699–704.

    Article  PubMed  CAS  Google Scholar 

  181. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362–9.

    Article  PubMed  Google Scholar 

  182. Strem BM, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–41.

    Article  PubMed  CAS  Google Scholar 

  183. De Ugarte DA, et al. Comparison of multilineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–9.

    Article  PubMed  Google Scholar 

  184. Aust L, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.

    Article  PubMed  CAS  Google Scholar 

  185. Kingham PJ, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74.

    Article  PubMed  CAS  Google Scholar 

  186. Xu Y, et al. Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res. 2008;1239:49–55.

    Article  PubMed  CAS  Google Scholar 

  187. Radtke C, et al. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci. 2009;27(8):817–23.

    Article  PubMed  CAS  Google Scholar 

  188. Chi GF, et al. Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Exp Neurol. 2010;222(2):304–17.

    Article  PubMed  CAS  Google Scholar 

  189. Mantovani C, et al. Bone marrow- and adipose-derived stem cells show expression of myelin mRNAs and proteins. Regen Med. 2010;5(3):403–10.

    Article  PubMed  CAS  Google Scholar 

  190. di Summa PG, et al. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience. 2011;181:278–91.

    Article  PubMed  CAS  Google Scholar 

  191. Erba P, et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811–7.

    Article  PubMed  CAS  Google Scholar 

  192. Kruger GM, et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35(4):657–69.

    Article  PubMed  CAS  Google Scholar 

  193. Toma JG, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–84.

    Article  PubMed  CAS  Google Scholar 

  194. Li L, et al. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003;100(17):9958–61.

    Article  PubMed  CAS  Google Scholar 

  195. Fernandes KJ, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–13.

    Article  PubMed  CAS  Google Scholar 

  196. Sieber-Blum M, et al. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn. 2004;231(2):258–69.

    Article  PubMed  CAS  Google Scholar 

  197. Amoh Y, et al. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005;102(15):5530–4.

    Article  PubMed  CAS  Google Scholar 

  198. Amoh Y, et al. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A. 2005;102(49):17734–8.

    Article  PubMed  CAS  Google Scholar 

  199. McKenzie IA, et al. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651–60.

    Article  PubMed  CAS  Google Scholar 

  200. Walsh S, et al. Supplementation of acellular nerve grafts with skin derived precursor cells promotes peripheral nerve regeneration. Neuroscience. 2009;164(3):1097–107.

    Article  PubMed  CAS  Google Scholar 

  201. Walsh SK, et al. Fate of stem cell transplants in peripheral nerves. Stem Cell Res. 2012;8(2):226–38.

    Article  PubMed  CAS  Google Scholar 

  202. Johnson PJ, et al. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant. 2010;19(1):89–101.

    Article  PubMed  Google Scholar 

  203. Trupp M, et al. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol. 1995;130(1):137–48.

    Article  PubMed  CAS  Google Scholar 

  204. Naveilhan P, ElShamy WM, Ernfors P. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur J Neurosci. 1997;9(7):1450–60.

    Article  PubMed  CAS  Google Scholar 

  205. Hammarberg H, et al. Differential regulation of trophic factor receptor mRNAs in spinal motoneurons after sciatic nerve transection and ventral root avulsion in the rat. J Comp Neurol. 2000;426(4):587–601.

    Article  PubMed  CAS  Google Scholar 

  206. Sun Y, et al. Effects of embryonic neural stem cells and glial cell line-derived neurotrophic factor in the repair of spinal cord injury. Sheng Li Xue Bao. 2003;55(3):349–54.

    PubMed  CAS  Google Scholar 

  207. Lie DC, Weis J. GDNF expression is increased in denervated human skeletal muscle. Neurosci Lett. 1998;250(2):87–90.

    Article  PubMed  CAS  Google Scholar 

  208. Zhao C, et al. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma. 2004;21(10):1468–78.

    Article  PubMed  Google Scholar 

  209. Eggers R, et al. A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp Neurol. 2010;223(1):207–20.

    Article  PubMed  CAS  Google Scholar 

  210. Hoke A, et al. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol. 2002;173(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  211. Boyd JG, Gordon T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol. 2003;183(2):610–9.

    Article  PubMed  CAS  Google Scholar 

  212. Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27(3):277–324.

    Article  PubMed  CAS  Google Scholar 

  213. Santos AR Jr, et al. Differential Schwann cell migration in adult and old mice: an in vitro study. Brain Res. 2000;881(1):73–6.

    Article  PubMed  CAS  Google Scholar 

  214. Young C, et al. Nerve growth factor and neurotrophin-3 affect functional recovery following peripheral nerve injury differently. Restor Neurol Neurosci. 2001;18(4):167–75.

    PubMed  CAS  Google Scholar 

  215. Wong LF, et al. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther. 2006;17(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  216. Hendriks WT, et al. Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune "stealth" transgene. Restor Neurol Neurosci. 2007;25(5–6):585–99.

    PubMed  Google Scholar 

  217. Tannemaat MR, et al. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci. 2008;28(8):1467–79.

    Article  PubMed  Google Scholar 

  218. Blits B, et al. Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor. Exp Neurol. 2004;189(2):303–16.

    Article  PubMed  CAS  Google Scholar 

  219. Shakhbazau A, et al. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Mol Cell Neurosci. 2012;50(1):103–12.

    Article  PubMed  CAS  Google Scholar 

  220. Hare GM, et al. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg. 1992;89(2):251–8.

    Article  PubMed  CAS  Google Scholar 

  221. Whitlock EL, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the National Institute of Health NINDS (5R01NS05170607, and 2R56NS03340618) supported the production of this manuscript. We would also like to thank Andrew Yee for supplying artwork for the manuscript figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Johnson PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, P.J., Wood, M.D., Moore, A.M... et al. Tissue engineered constructs for peripheral nerve surgery. Eur Surg 45, 122–135 (2013). https://doi.org/10.1007/s10353-013-0205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-013-0205-0

Keywords

Navigation