Skip to main content

Using Baseline Transcriptional Connectomes in Rat to Identify Genetic Pathways Associated with Predisposition to Complex Traits

  • Protocol
  • First Online:
Systems Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1488))

Abstract

Although rat is a critical model organism in preclinical medications development, its use in systems genetics studies remains sparse. The PhenoGen database and website contain detailed information on the qualitative and quantitative aspects of the rat brain, liver, heart, and brown adipose transcriptome. This database has been generated using the HXB/BXH recombinant inbred panel and is being expanded to a hybrid rat diversity panel that includes many common inbred strains as well. By using such a panel, the PhenoGen project has created a renewable and cumulative resource for the rat genomics community. The database has been used to reconstruct the brain transcriptome identifying both annotated and unannotated transcribed elements that range in size from 20 nucleotides to over 30,000 nucleotides and elements that have a wide variety of roles in the cell including generation of proteins and regulation of the transcription and translation processes. In all 4 tissues, baseline transcriptional connectomes have been generated to model the relationships among transcripts. These connectomes can be used to identify genetic pathways associated with complex traits and to gain insight into biological function of individual transcripts. The PhenoGen website contains tools that allow the user to explore qualitative features of individual genes and to see how the gene relates to other genes within a tissue. The PhenoGen database and website continue to grow and to make use of the latest statistical methods for systems genetics creating a national resource for the rat genomics community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvak Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40(5):516–522. doi:10.1038/ng.147

    Article  CAS  PubMed  Google Scholar 

  2. Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G, Kiianmaa K, Bell RL, Printz MP, Flodman P, Koob G, Richardson HN, Lombardo J, Hoffman PL, Tabakoff B (2015) The sequenced rat brain transcriptome – its use in identifying networks predisposing alcohol consumption. FEBS J 282(18):3556–3578. doi:10.1111/febs.13358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cowley AW Jr, Liang M, Roman RJ, Greene AS, Jacob HJ (2004) Consomic rat model systems for physiological genomics. Acta Physiol Scand 181(4):585–592. doi:10.1111/j.1365-201X.2004.01334.x

    Article  CAS  PubMed  Google Scholar 

  4. Consortium S, Saar K, Beck A, Bihoreau MT, Birney E, Brocklebank D, Chen Y, Cuppen E, Demonchy S, Dopazo J, Flicek P, Foglio M, Fujiyama A, Gut IG, Gauguier D, Guigo R, Guryev V, Heinig M, Hummel O, Jahn N, Klages S, Kren V, Kube M, Kuhl H, Kuramoto T, Kuroki Y, Lechner D, Lee YA, Lopez-Bigas N, Lathrop GM, Mashimo T, Medina I, Mott R, Patone G, Perrier-Cornet JA, Platzer M, Pravenec M, Reinhardt R, Sakaki Y, Schilhabel M, Schulz H, Serikawa T, Shikhagaie M, Tatsumoto S, Taudien S, Toyoda A, Voigt B, Zelenika D, Zimdahl H, Hubner N (2008) SNP and haplotype mapping for genetic analysis in the rat. Nat Genet 40(5):560–566. doi:10.1038/ng.124

    Article  Google Scholar 

  5. Solberg Woods LC (2014) QTL mapping in outbred populations: successes and challenges. Physiol Genomics 46(3):81–90. doi:10.1152/physiolgenomics.00127.2013

    Article  PubMed  Google Scholar 

  6. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683. doi:10.1038/nbt.2661

    Article  CAS  PubMed  Google Scholar 

  7. Printz MP, Jirout M, Jaworski R, Alemayehu A, Kren V (2003) Genetic models in applied physiology. HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J Appl Physiol (1985) 94(6):2510–2522. doi:10.1152/japplphysiol.00064.2003

    Article  CAS  Google Scholar 

  8. Pravenec M, Klir P, Kren V, Zicha J, Kunes J (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens 7(3):217–221

    Article  CAS  PubMed  Google Scholar 

  9. Morrissey C, Grieve IC, Heinig M, Atanur S, Petretto E, Pravenec M, Hubner N, Aitman TJ (2011) Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol Genomics 43(21):1207–1218. doi:10.1152/physiolgenomics.00210.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zicha J, Dobesova Z, Zidek V, Silhavy J, Simakova M, Mlejnek P, Vaneckova I, Kunes J, Pravenec M (2014) Pharmacogenetic analysis of captopril effects on blood pressure: possible role of the Ednrb (endothelin receptor type B) candidate gene. Physiol Res 63(2):263–265

    CAS  PubMed  Google Scholar 

  11. Voigt B, Kuramoto T, Mashimo T, Tsurumi T, Sasaki Y, Hokao R, Serikawa T (2008) Evaluation of LEXF/FXLE rat recombinant inbred strains for genetic dissection of complex traits. Physiol Genomics 32(3):335–342. doi:10.1152/physiolgenomics.00158.2007

    Article  CAS  PubMed  Google Scholar 

  12. Shisa H, Lu L, Katoh H, Kawarai A, Tanuma J, Matsushima Y, Hiai H (1997) The LEXF: a new set of rat recombinant inbred strains between LE/Stm and F344. Mamm Genome 8(5):324–327

    Article  CAS  PubMed  Google Scholar 

  13. Hermsen R, de Ligt J, Spee W, Blokzijl F, Schafer S, Adami E, Boymans S, Flink S, van Boxtel R, van der Weide RH, Aitman T, Hubner N, Simonis M, Tabakoff B, Guryev V, Cuppen E (2015) Genomic landscape of rat strain and substrain variation. BMC Genomics 16:357. doi:10.1186/s12864-015-1594-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Atanur SS, Birol I, Guryev V, Hirst M, Hummel O, Morrissey C, Behmoaras J, Fernandez-Suarez XM, Johnson MD, McLaren WM, Patone G, Petretto E, Plessy C, Rockland KS, Rockland C, Saar K, Zhao Y, Carninci P, Flicek P, Kurtz T, Cuppen E, Pravenec M, Hubner N, Jones SJ, Birney E, Aitman TJ (2010) The genome sequence of the spontaneously hypertensive rat: analysis and functional significance. Genome Res 20(6):791–803. doi:10.1101/gr.103499.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cech TR (2015) RNA World research-still evolving. RNA 21(4):474–475. doi:10.1261/rna.049965.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weiss JN, Karma A, MacLellan WR, Deng M, Rau CD, Rees CM, Wang J, Wisniewski N, Eskin E, Horvath S, Qu Z, Wang Y, Lusis AJ (2012) “Good enough solutions” and the genetics of complex diseases. Circ Res 111(4):493–504. doi:10.1161/CIRCRESAHA.112.269084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17. doi:10.2202/1544-6115.1128

    Google Scholar 

  18. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vanderlinden LA, Saba LM, Printz MP, Flodman P, Koob G, Richardson HN, Hoffman PL, Tabakoff B (2014) Is the alcohol deprivation effect genetically mediated? Studies with HXB/BXH recombinant inbred rat strains. Alcohol Clin Exp Res 38(7):2148–2157. doi:10.1111/acer.12471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vansteelandt S, Lange C (2012) Causation and causal inference for genetic effects. Hum Genet 131(10):1665–1676. doi:10.1007/s00439-012-1208-9

    Article  PubMed  Google Scholar 

  21. Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27(17):2325–2329. doi:10.1093/bioinformatics/btr355

    Article  CAS  PubMed  Google Scholar 

  22. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415. doi:10.1038/nbt1394

    Article  PubMed  Google Scholar 

  23. Yang JH, Zhang XC, Huang ZP, Zhou H, Huang MB, Zhang S, Chen YQ, Qu LH (2006) snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. Nucleic Acids Res 34(18):5112–5123. doi:10.1093/nar/gkl672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Raney BJ, Pohl A, Malladi VS, Li CH, Lee BT, Learned K, Kirkup V, Hsu F, Heitner S, Harte RA, Haeussler M, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Dreszer TR, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, Kent WJ (2013) The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 41(Database issue):D64–D69. doi:10.1093/nar/gks1048

    Article  CAS  PubMed  Google Scholar 

  25. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Kahari AK, Keenan S, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Overduin B, Parker A, Patricio M, Perry E, Pignatelli M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Aken BL, Birney E, Harrow J, Kinsella R, Muffato M, Ruffier M, Searle SM, Spudich G, Trevanion SJ, Yates A, Zerbino DR, Flicek P (2015) Ensembl 2015. Nucleic Acids Res 43(Database issue):D662–D669. doi:10.1093/nar/gku1010

    Article  PubMed  Google Scholar 

  26. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O'Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, DiCuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42(Database issue):D756–D763. doi:10.1093/nar/gkt1114

    Article  CAS  PubMed  Google Scholar 

  27. Shimoyama M, De Pons J, Hayman GT, Laulederkind SJ, Liu W, Nigam R, Petri V, Smith JR, Tutaj M, Wang SJ, Worthey E, Dwinell M, Jacob H (2015) The Rat Genome Database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Res 43(Database issue):D743–D750. doi:10.1093/nar/gku1026

    Article  PubMed  Google Scholar 

  28. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hickey G, Hinrichs AS, Hubley R, Karolchik D, Learned K, Lee BT, Li CH, Miga KH, Nguyen N, Paten B, Raney BJ, Smit AF, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ (2015) The UCSC Genome Browser database: 2015 update. Nucleic Acids Res 43(Database issue):D670–D681. doi:10.1093/nar/gku1177

    Article  PubMed  Google Scholar 

  29. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645. doi:10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D (2014) The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res 42(17), e133. doi:10.1093/nar/gku631

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. doi:10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  32. Stasko J, Catrambone R, Guzdial M, McDonald K (2000) An evaluation of space-filling information visualizations for depicting hierarchical structures. Int J Hum-Comput St 53(5):663–694. doi:10.1006/ijhc.2000.0420

    Article  Google Scholar 

  33. Gene Ontology C (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43(Database issue):D1049–D1056. doi:10.1093/nar/gku1179

    Article  Google Scholar 

  34. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. doi:10.1186/1471-2105-9-559

    Article  PubMed  PubMed Central  Google Scholar 

  35. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534. doi:10.1016/j.euroneuro.2010.03.008

    Article  PubMed  Google Scholar 

  36. Wolf L, Goldberg C, Manor N, Sharan R, Ruppin E (2011) Gene expression in the rodent brain is associated with its regional connectivity. PLoS Comput Biol 7(5), e1002040. doi:10.1371/journal.pcbi.1002040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N, Neubauer M, Neuhaus I, Yordanova R, Guan B, Truong A, Yang WP, He A, Kayne P, Gargalovic P, Kirchgessner T, Pan C, Castellani LW, Kostem E, Furlotte N, Drake TA, Eskin E, Lusis AJ (2010) A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res 20(2):281–290. doi:10.1101/gr.099234.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pearl J (2009) Causality. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgement

This work was supported by NIAAA (AA013162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Saba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saba, L., Hoffman, P., Tabakoff, B. (2017). Using Baseline Transcriptional Connectomes in Rat to Identify Genetic Pathways Associated with Predisposition to Complex Traits. In: Schughart, K., Williams, R. (eds) Systems Genetics. Methods in Molecular Biology, vol 1488. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6427-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6427-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6425-3

  • Online ISBN: 978-1-4939-6427-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics