Skip to main content
Log in

Causation and causal inference for genetic effects

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Over the past three decades, substantial developments have been made on how to infer the causal effect of an exposure on an outcome, using data from observational studies, with the randomized experiment as the golden standard. These developments have reshaped the paradigm of how to build statistical models, how to adjust for confounding, how to assess direct effects, mediated effects and interactions, and even how to analyze data from randomized experiments. The congruence of random transmission of alleles during meiosis and the randomization in controlled experiments/trials, suggests that genetic studies may lend themselves naturally to a causal analysis. In this contribution, we will reflect on this and motivate, through illustrative examples, where insights from the causal inference literature may help to understand and correct for typical biases in genetic effect estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avin C, Shpitser I, Pearl J (2008) Identifiability of path-specific effects. In: Proceedings of the international joint conferences on artificial intelligence, 357–363

  • Bateson W (1909) Mendel’s Principles of Heredity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Berzuini C, Vansteelandt S, Foco L, Pastorino R. and Bernardinelli L (2011) Direct genetic effects and their estimation from matched case-control data. University of Cambridge Technical Report

  • Chanock SJ, Hunter DJ (2008) Genomics—when the smoke clears. Nature 452:537–538

    Article  PubMed  CAS  Google Scholar 

  • Cole SR, Hernan MA (2002) Fallibility in estimating direct effects. Int J Epidemiol 31:163–165

    Article  PubMed  Google Scholar 

  • Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  PubMed  CAS  Google Scholar 

  • Cordell HJ (2009) Detecting gene–gene interaction that underlie human diseases. Nat Rev Genet 10:392–404

    Article  PubMed  CAS  Google Scholar 

  • Dawid AP (2000) Causal inference without counterfactuals. J Am Statist Assoc 95:407–424

    Article  Google Scholar 

  • Epstein MP, Allen AS, Satten GA (2007) A simple and improved correction for population stratification in case-control studies. Am J Hum Genet 80:921–930

    Article  PubMed  CAS  Google Scholar 

  • Ewens WJ, Spielman RS (1995) The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet 57:455–464

    PubMed  CAS  Google Scholar 

  • Fardo DW, Liu J, Demeo DL, Silverman E, Vansteelandt S (2011) Gene-environment interaction testing in family-based association studies with phenotypically ascertained samples: A causal inference approach. Biostatistics 13:468–481. doi:10.1093/biostatistics/kxr035

    Article  PubMed  Google Scholar 

  • Greenland S (2008) Variable selection versus shrinkage in the control of multiple confounders. Am J Epidemiol 167:523–529

    Article  PubMed  Google Scholar 

  • Greenland S (2009) Interactions in epidemiology: relevance, identification, and estimation. Epidemiol 20:14–17

    Google Scholar 

  • Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology 10:37–48

    Article  PubMed  CAS  Google Scholar 

  • Hernan MA, Hernandez-Diaz S, Werler MM, Mitchell AA (2002) Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidem 155:176–184

    Article  Google Scholar 

  • Imai K, Keele L, Tingley D (2010) A general approach to causal mediation analysis. Psychol Methods 15:309–334

    Article  PubMed  Google Scholar 

  • Laird NM, Lange C (2006) Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet 7:385–394

    Article  PubMed  CAS  Google Scholar 

  • Laird NM, Lange C (2011) The Fundamentals of Modern Statistical Genetics. Springer, Berlin

    Book  Google Scholar 

  • Lange T, Vansteelandt S, Bekaert, M (2012) A simple unified approach for estimating natural direct and indirect effects. Am J Epidemiol 176:190–195

    Google Scholar 

  • Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Smith GD (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27:1133–1163

    Article  PubMed  Google Scholar 

  • Lipman PJ, Lange C (2011) CGene: an R package for implementation of causal genetic analyses. Eur J Hum Genet 19:1292–1294

    Article  PubMed  CAS  Google Scholar 

  • Martinussen T, Vansteelandt S, Gerster M, Hjelmborg JvB (2011) Estimation of direct effects for survival data using the Aalen additive hazards model. J R Stat Soc Ser B 73:773–788

    Article  Google Scholar 

  • Neyman J (1923) Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes. Master’s Thesis. Excerpts reprinted in English, Statistical Science, 5, 463–472 (D. M. Dabrowska, and T. P. Speed, Translators)

  • Pearl J (1995) Causal diagrams for empirical research. Biometrika 82:669–688

    Article  Google Scholar 

  • Pearl J (2001) Direct and Indirect Effects, In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, Morgan Kaufmann, pp 411–420

  • Pearl J (2009) Causality, 2nd edition. Cambridge University Press, Cambridge

  • Phillips PC (2008) Epistasis-the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  PubMed  CAS  Google Scholar 

  • Price AL et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  • Robins JM (1999) Testing and estimation of direct effects by reparameterizing directed acyclic graphs with structural nested models. In: Glymour C, Cooper G (eds) Computation, Causation, and Discovery. AAAI Press/The MIT Press, Cambridge, pp 349–405

    Google Scholar 

  • Robins JM (2001) Data, design, and background knowledge in etiologic inference. Epidemiology 11:313–320

    Article  Google Scholar 

  • Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 3:143–155

    Article  PubMed  CAS  Google Scholar 

  • Robins JM, Wasserman L (1999) On the impossibility of inferring causation from association without background knowledge. In: Glymour C, Cooper G (eds) Computation, Causation, and Discovery. AAAI Press/The MIT Press, Cambridge, pp 305–321

    Google Scholar 

  • Robins JM, Mark SD, Newey WK (1992) Estimating exposure effects by modelling the expectation of exposure conditional on confounders. Biometrics 48:479–495

    Article  PubMed  CAS  Google Scholar 

  • Robins JM, Hernan M, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11:550–560

    Article  PubMed  CAS  Google Scholar 

  • Robins JM, Smoller JW, Lunetta K (2001) On the validity of the TDT test in the presence of comorbidity and ascertainment bias. Genet Epidemiol 21:326–336

    Article  PubMed  CAS  Google Scholar 

  • Robins JM, Scheines R, Spirtes P, Wasserman L (2003) Uniform consistency in causal inference. Biometrika 90:491–515

    Article  Google Scholar 

  • Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70:41–55

    Article  Google Scholar 

  • Rothman KJ (1986) Modern Epidemiology, 1st edn. Little Brown and Company, Boston

    Google Scholar 

  • Rubin D (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66:689

    Article  Google Scholar 

  • Sheehan NA, Didelez V, Burton PR, Tobin MD (2008) Mendelian randomisation and causal inference in observational epidemiology. PLoS Med 5:1205–1210

    Article  Google Scholar 

  • Shipley B (2000) Cause and Correlation in Biology: A User’s Guide to Path Analysis. Cambridge University Press, Cambridge, Structural Equations and Causal Inference

    Book  Google Scholar 

  • Spirtes P, Glymour C, Sheines R (2000) Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Tchetgen EJT (2011) Robust discovery of genetic associations incorporating gene-environment interaction and independence. Epidemiology 22:262–272

    Article  Google Scholar 

  • Tchetgen EJT, Shpitser I (2012) Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis. Ann Statist (in press)

  • Tchetgen EJT, Robins JM, Rotnitzky A (2010) On doubly robust estimation in a semiparametric odds ratio model. Biometrika 97:171–180

    Article  Google Scholar 

  • Ten Have TR, Joffe M (2012) A review of causal estimation of effects in mediation analyses. Stat Methods Med Res 21:77–107

    Article  PubMed  Google Scholar 

  • Tsiatis AA, Davidian M, Zhang M, Lu XM (2008) Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. Stat Med 27:4658–4677

    Article  PubMed  Google Scholar 

  • Umbach DM, Weinberg CR (1997) Designing and analysing case-control studies to exploit independence of genotype and exposure. Stat Med 16:1731–1743

    Article  PubMed  CAS  Google Scholar 

  • van der Laan MJ, Petersen ML (2008) Direct effect models. Int J Biostat 4:1–27

    Google Scholar 

  • VanderWeele TJ (2009a) Marginal structural models for the estimation of direct and indirect effects. Epidemiology 20:18–26

    Article  PubMed  Google Scholar 

  • VanderWeele TJ (2009b) Sufficient cause interactions and statistical interactions. Epidemiology 20:6–13

    Article  PubMed  Google Scholar 

  • VanderWeele TJ (2010a) Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology 21:540–551

    Article  PubMed  Google Scholar 

  • VanderWeele, TJ (2010) Epistatic Interactions. Statistical Appl Genet Mol Biol 9:1

  • VanderWeele TJ (2012) Sample size and power calculations for additive interactions. Epidemiol Methods, (in press)

  • VanderWeele TJ, Hernan MA (2012) Causal effects and natural laws: towards a conceptualization of causal counterfactuals for non-manipulable exposures with application to the effects of race and sex. In: Berzuini C, Dawid P, Bernardinelli L (eds) Causal Inference: Statistical Perspectives and Applications. Wiley, Canada

    Google Scholar 

  • VanderWeele TJ, Laird NM (2011) Tests for compositional epistasis under single interaction-parameter models. Ann Hum Genet 75:146–156

    Article  PubMed  Google Scholar 

  • VanderWeele TJ, Vansteelandt S (2009) Conceptual issues concerning mediation, interventions and composition. Stat Interface 2:457–468

    Google Scholar 

  • VanderWeele TJ, Vansteelandt S (2010) Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidem 172:1339–1348

    Article  Google Scholar 

  • VanderWeele TJ, Vansteelandt S, Robins JM (2010) Marginal structural models for sufficient cause interactions. Am J Epidemiol 171:506–514

    Article  PubMed  Google Scholar 

  • VanderWeele TJ, Asomaning K, Tchetgen Tchetgen EJ, Han Y, Spitz MR, Shete S, Wu X, Gaborieau V, Wang Y, McLaughlin J, Hung RJ, Brennan P, Amos CI, Christiani DC, Lin X (2012) Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am J Epidemiol 175:1013–1020. doi:10.1093/aje/kwr467

    Article  PubMed  Google Scholar 

  • Vansteelandt S (2009) Estimating direct effects in cohort and case-control studies. Epidemiology 20:851–860

    Article  PubMed  Google Scholar 

  • Vansteelandt S (2010) Estimation of controlled direct effects on a dichotomous outcome using logistic structural direct effect models. Biometrika 97:921–934

    Article  Google Scholar 

  • Vansteelandt S (2012) Estimation of direct and indirect effects. In: Berzuini C, Dawid P, Bernardinelli L (eds) Causal Inference: Statistical Perspectives and Applications. Wiley, Canada

    Google Scholar 

  • Vansteelandt S, DeMeo D, Su J, Smoller J, Murphy AJ, McQueen M, Celedon J, Weiss ST, Silverman EK, Lange C (2008a) Testing and estimating gene-environment interactions in family-based association studies. Biometrics 64:458–467

    Article  PubMed  Google Scholar 

  • Vansteelandt S, VanderWeele T, Tchetgen EJ, Robins JM (2008b) Semiparametric inference for statistical interactions. J Am Stat Assoc 103:1693–1704

    Article  PubMed  CAS  Google Scholar 

  • Vansteelandt S, Goetgeluk S, Lutz S, Waldman I, Lyon H, Schadt EE, Weiss ST, Lange C (2009) On the adjustment for covariates in genetic association analysis: a novel, simple principle to infer direct causal effects. Gen Epidem 33:394–405

    Article  Google Scholar 

  • Vansteelandt S, VanderWeele TJ, Robins JM (2012a) Semiparametric tests for sufficient cause interaction. J R Stat Soc B 74:223–244. doi:10.1111/j.1467-9868.2011.01011.x

    Article  Google Scholar 

  • Vansteelandt S, Bekaert M, Claeskens G (2012b) On model selection and model misspecification in causal inference. Stat Methods Med Res 21:7–30

    Article  PubMed  Google Scholar 

  • Wright S (1934) The method of path coefficients. Ann Math Stat 5:161–215

    Article  Google Scholar 

Download references

Acknowledgments

S. Vansteelandt acknowledges support from Ghent University (Multidisciplinary Research Partnership ‘Bioinformatics: from nucleotides to networks’), IAP research network grant nr. P06/03 from the Belgian government (Belgian Science Policy) and FWO research project G.0111.12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stijn Vansteelandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vansteelandt, S., Lange, C. Causation and causal inference for genetic effects. Hum Genet 131, 1665–1676 (2012). https://doi.org/10.1007/s00439-012-1208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1208-9

Keywords

Navigation