Skip to main content

Spermatogenesis

  • Chapter
  • First Online:
Germ Cell Development in C. elegans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 757))

Abstract

During spermatogenesis, pluripotent germ cells differentiate to become efficient delivery vehicles to the oocyte of paternal DNA. Though male and female germ cells both undergo meiosis to produce haploid complements of DNA, at the same time they also each undergo distinct differentiation processes that result in either sperm or oocytes. This review will discuss our current understanding of mechanisms of sperm formation and differentiation in Caenorhabditis elegans gained from studies that employ a combination of molecular, transcriptomic, and cell biological approaches. Many of these processes also occur during spermatogenesis in other organisms but with differences in timing, molecular machinery, and morphology. In C. elegans, sperm differentiation is implemented by varied modes of gene regulation, including the genomic organization of genes important for sperm formation, the generation of sperm-specific small RNAs, and the interplay of specific transcriptional activators. As sperm formation progresses, chromatin is ­systematically remodeled to allow first for the implementation of differentiation programs, then for sperm-specific DNA packaging required for transit of paternal genetic and epigenetic information. Sperm also exhibit distinctive features of ­meiotic progression, including the formation of a unique karyosome state and the centrosomal-based segregation of chromosomes during symmetric meiotic ­divisions. Sperm-specific organelles are also assembled and remodeled as cells complete ­meiosis and individualize in preparation for activation, morphogenesis, and the acquisition of motility. Finally, in addition to DNA, sperm contribute specific cellular factors that contribute to successful embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achanzar WE, Ward S (1997) A nematode gene required for sperm vesicle fusion. J Cell Sci 110(Pt 9):1073–1081

    PubMed  CAS  Google Scholar 

  • Aitken RJ, De Iuliis GN (2007) Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online 14(6):727–733

    PubMed  CAS  Google Scholar 

  • Albertson DG (1984) Formation of the first cleavage spindle in nematode embryos. Dev Biol 101(1):61–72

    PubMed  CAS  Google Scholar 

  • Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1(1):15–26

    PubMed  CAS  Google Scholar 

  • Aoki K, Moriguchi H, Yoshioka T, Okawa K, Tabara H (2007) In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J 26(24):5007–5019

    PubMed  CAS  Google Scholar 

  • Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207

    PubMed  CAS  Google Scholar 

  • Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764

    PubMed  CAS  Google Scholar 

  • Arduengo PM, Appleberry OK, Chuang P, L’Hernault SW (1998) The presenilin protein family member SPE-4 localizes to an ER/Golgi derived organelle and is required for proper cytoplasmic partitioning during Caenorhabditis elegans spermatogenesis. J Cell Sci 111(Pt 24):3645–3654

    PubMed  CAS  Google Scholar 

  • Arico JK, Katz DJ, van der Vlag J, Kelly WG (2011) Epigenetic patterns maintained in early Caenorhabditis elegans embryos can be established by gene activity in the parental germ cells. PLoS Genet 7(6):e1001391

    PubMed  CAS  Google Scholar 

  • Bae YK, Kim E, L’Hernault SW, Barr MM (2009) The CIL-1 PI 5-phosphatase localizes TRP Polycystins to cilia and activates sperm in C. elegans. Curr Biol 19(19):1599–1607

    PubMed  CAS  Google Scholar 

  • Bamps S, Hope IA (2008) Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans. Brief Funct Genomic Proteomic 7(3):175–183

    PubMed  CAS  Google Scholar 

  • Barton MK, Schedl TB, Kimble J (1987) Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans. Genetics 115(1):107–119

    PubMed  CAS  Google Scholar 

  • Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D Jr, Luo S, Schroth GP, Carrington JC, Bartel DP, Mello CC (2008) PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 31(1):67–78

    PubMed  CAS  Google Scholar 

  • Beanan MJ, Strome S (1992) Characterization of a germ-line proliferation mutation in C. elegans. Development 116(3):755–766

    PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    PubMed  CAS  Google Scholar 

  • Beshore EL, McEwen TJ, Jud MC, Marshall JK, Schisa JA, Bennett KL (2011) C. elegans dicer interacts with the P-granule component GLH-1 and both regulate germline RNPs. Dev Biol 350(2):370–381

    PubMed  CAS  Google Scholar 

  • Bettegowda A, Wilkinson MF (2011) Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365(1546):1637–1651

    Google Scholar 

  • Braun RE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28(1):10–12

    PubMed  CAS  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103

    PubMed  CAS  Google Scholar 

  • Browning H, Strome S (1996) A sperm-supplied factor required for embryogenesis in C. elegans. Development 122(1):391–404

    PubMed  CAS  Google Scholar 

  • Burrows AE, Sceurman BK, Kosinski ME, Richie CT, Sadler PL, Schumacher JM, Golden A (2006) The C. elegans Myt1 ortholog is required for the proper timing of oocyte maturation. Development 133(4):697–709

    PubMed  CAS  Google Scholar 

  • Buttery SM, Ekman GC, Seavy M, Stewart M, Roberts TM (2003) Dissection of the Ascaris sperm motility machinery identifies key proteins involved in major sperm protein-based amoeboid locomotion. Mol Biol Cell 14(12):5082–5088

    PubMed  CAS  Google Scholar 

  • Byrd DT, Kimble J (2009) Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin Cell Dev Biol 20(9):1107–1113

    PubMed  CAS  Google Scholar 

  • Caron C, Govin J, Rousseaux S, Khochbin S (2005) How to pack the genome for a safe trip. Prog Mol Subcell Biol 38:65–89

    PubMed  CAS  Google Scholar 

  • Chatterjee I, Richmond A, Putiri E, Shakes DC, Singson A (2005) The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 132(12):2795–2808

    PubMed  CAS  Google Scholar 

  • Chu D, Liu H, Nix P, Wu T, Ralston E, Yates J, Meyer B (2006) Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 443(7107):101–105

    PubMed  CAS  Google Scholar 

  • Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, Shirayama M, Mello CC (2010) Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26 G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci USA 107(8):3588–3593

    PubMed  CAS  Google Scholar 

  • Cowan CR, Hyman AA (2004) Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431(7004):92–96

    PubMed  CAS  Google Scholar 

  • Dammermann A, Maddox PS, Desai A, Oegema K (2008) SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules. J Cell Biol 180(4):771–785

    PubMed  CAS  Google Scholar 

  • Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E, Ketting RF, Tavare S, Miska EA (2008) Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 31(1):79–90

    PubMed  CAS  Google Scholar 

  • del Castillo-Olivares A, Kulkarni M, Smith HE (2009) Regulation of sperm gene expression by the GATA factor ELT-1. Dev Biol 333(2):397–408

    PubMed  Google Scholar 

  • Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830

    PubMed  CAS  Google Scholar 

  • Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol 153(6):F33–F38

    PubMed  CAS  Google Scholar 

  • Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO (2000) A conserved checkpoint pathway mediates DNA damage—induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5(3):435–443

    PubMed  CAS  Google Scholar 

  • Geldziler B, Chatterjee I, Singson A (2005) The genetic and molecular analysis of spe-19, a gene required for sperm activation in Caenorhabditis elegans. Dev Biol 283(2):424–436

    PubMed  CAS  Google Scholar 

  • Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, Fire AZ, Baudrimont A (2009) A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNAi. Genetics 183(4):1297–1314

    PubMed  CAS  Google Scholar 

  • Gleason EJ, Lindsey WC, Kroft TL, Singson AW, L’Hernault SW (2006) spe-10 encodes a DHHC-CRD zinc-finger membrane protein required for endoplasmic reticulum/Golgi membrane morphogenesis during Caenorhabditis elegans spermatogenesis. Genetics 172(1):145–158

    PubMed  CAS  Google Scholar 

  • Golden A, Sadler PL, Wallenfang MR, Schumacher JM, Hamill DR, Bates G, Bowerman B, Seydoux G, Shakes DC (2000) Metaphase to anaphase (mat) transition-defective mutants in Caenorhabditis elegans. J Cell Biol 151(7):1469–1482

    PubMed  CAS  Google Scholar 

  • Golden DE, Gerbasi VR, Sontheimer EJ (2008) An inside job for siRNAs. Mol Cell 31(3):309–312

    PubMed  CAS  Google Scholar 

  • Goldstein B, Hird SN (1996) Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122(5):1467–1474

    PubMed  CAS  Google Scholar 

  • Gosney R, Liau WS, Lamunyon CW (2008) A novel function for the presenilin family member spe-4: inhibition of spermatid activation in Caenorhabditis elegans. BMC Dev Biol 8:44

    PubMed  Google Scholar 

  • Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S (2004) The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem 271(17):3459–3469

    PubMed  CAS  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34

    PubMed  CAS  Google Scholar 

  • Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20(13):1709–1714

    PubMed  CAS  Google Scholar 

  • Gruzova MN, Parfenov VN (1993) Karyosphere in oogenesis and intranuclear morphogenesis. Int Rev Cytol 144:1–52

    PubMed  CAS  Google Scholar 

  • Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315(5818):1587–1590

    PubMed  CAS  Google Scholar 

  • Hamill DR, Severson AF, Carter JC, Bowerman B (2002) Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev Cell 3(5):673–684

    PubMed  CAS  Google Scholar 

  • Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK (2009) 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 106(44):18674–18679

    PubMed  CAS  Google Scholar 

  • Hansen D, Schedl T (2012) Stem cell proliferation versus meiotic fate decision in C. elegans. Advances in Experimental Medicine and Biology 757:71–99. (Chap. 4, this volume) Springer, New York

    Google Scholar 

  • Hill DP, Shakes DC, Ward S, Strome S (1989) A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11. Dev Biol 136(1):154–166

    PubMed  CAS  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129(1):69–82

    PubMed  CAS  Google Scholar 

  • Howe M, McDonald KL, Albertson DG, Meyer BJ (2001) HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J Cell Biol 153(6):1227–1238

    PubMed  CAS  Google Scholar 

  • Hsu J, Sun Z, Li X, Reuben M, Tatchell K, Bishop D, Grushcow J, Brame C, Caldwell J, Hunt D, Lin R, Smith M, Allis C (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102(3):279–291

    PubMed  CAS  Google Scholar 

  • Italiano JE Jr, Roberts TM, Stewart M, Fontana CA (1996) Reconstitution in vitro of the motile apparatus from the amoeboid sperm of Ascaris shows that filament assembly and bundling move membranes. Cell 84(1):105–114

    PubMed  CAS  Google Scholar 

  • Jaramillo-Lambert A, Ellefson M, Villeneuve AM, Engebrecht J (2007) Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev Biol 308(1):206–221

    PubMed  CAS  Google Scholar 

  • Jaramillo-Lambert A, Harigaya Y, Vitt J, Villeneuve A, Engebrecht J (2010) Meiotic errors activate checkpoints that improve gamete quality without triggering apoptosis in male germ cells. Curr Biol 20(23):2078–2089

    PubMed  CAS  Google Scholar 

  • Jenkins N, Saam JR, Mango SE (2006) CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science 313(5791):1298–1301

    PubMed  CAS  Google Scholar 

  • Johnston WL, Krizus A, Dennis JW (2010) Eggshell chitin and chitin-interacting proteins prevent polyspermy in C. elegans. Curr Biol 20(21):1932–1937

    PubMed  CAS  Google Scholar 

  • Justine JL (2002) Male and female gametes and fertilization. In: Biology of nematodes. Taylor & Francis, London

    Google Scholar 

  • Justine JL, Jamieson BGM (2000) Nematode, vol IX, part B. Progress in male gamete ultrastructure and phylogeny. Reproductive biology of invertebrates, vol IX, part B. Wiley, Chichester

    Google Scholar 

  • Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10(5):R54

    PubMed  Google Scholar 

  • Kelleher JF, Mandell MA, Moulder G, Hill KL, L’Hernault SW, Barstead R, Titus MA (2000) Myosin VI is required for asymmetric segregation of cellular components during C. elegans spermatogenesis. Curr Biol 10(23):1489–1496

    PubMed  CAS  Google Scholar 

  • Kelly WG, Schaner CE, Dernburg AF, Lee M-H, Kim SK, Villeneuve AM, Reinke V (2002) X chromosome silencing in the germline of C. elegans. Development 129(2):479–492

    PubMed  CAS  Google Scholar 

  • Ketola I, Rahman N, Toppari J, Bielinska M, Porter-Tinge SB, Tapanainen JS, Huhtaniemi IT, Wilson DB, Heikinheimo M (1999) Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology 140(3):1470–1480

    PubMed  CAS  Google Scholar 

  • Ketola I, Pentikainen V, Vaskivuo T, Ilvesmaki V, Herva R, Dunkel L, Tapanainen JS, Toppari J, Heikinheimo M (2000) Expression of transcription factor GATA-4 during human testicular development and disease. J Clin Endocrinol Metab 85(10):3925–3931

    PubMed  CAS  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659

    PubMed  CAS  Google Scholar 

  • Kim DY, Roy R (2006) Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. J Cell Biol 174(6):751–757

    PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    PubMed  CAS  Google Scholar 

  • Kim S, Spike CA, Greenstein D (2012) Control of oocyte growth and meiotic maturation in C. elegans. Advances in Experimental Medicine and Biology 757:277–320. (Chap. 10, this ­volume) Springer, New York

    Google Scholar 

  • Kimble J, Crittenden SL (2007) Control of germline stem cells, entry into meiosis, and the sperm/oocyte decision in C. elegans. Annu Rev Cell Dev Biol 23:405–433

    PubMed  CAS  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434(7033):583–589

    PubMed  CAS  Google Scholar 

  • Kimmins S, Kotaja N, Davidson I, Sassone-Corsi P (2004) Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction 128(1):5–12

    PubMed  CAS  Google Scholar 

  • Kitagawa R (2009) Key players in chromosome segregation in Caenorhabditis elegans. Front Biosci 14:1529–1557

    PubMed  CAS  Google Scholar 

  • Klass M, Ammons D, Ward S (1988) Conservation in the 5′ flanking sequences of transcribed members of the Caenorhabditis elegans major sperm protein gene family. J Mol Biol 199(1):15–22

    PubMed  CAS  Google Scholar 

  • Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293(5538):2269–2271

    PubMed  CAS  Google Scholar 

  • Kulkarni M, Shakes DC, Guevel K, Smith HE (2012) SPE-44 implements sperm cell fate. PLoS Genet. 8(4):e1002678

    PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131(4):839–849

    PubMed  CAS  Google Scholar 

  • LaMunyon CW, Ward S (1995) Sperm precedence in a hermaphroditic nematode (Caenorhabditis elegans) is due to competitive superiority of male sperm. Experientia 51(8):817–823

    PubMed  CAS  Google Scholar 

  • LaMunyon CW, Ward S (1998) Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proc R Soc Lond B Biol Sci 265(1409):1997–2002

    CAS  Google Scholar 

  • LeClaire LL 3rd, Stewart M, Roberts TM (2003) A 48 kDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. J Cell Sci 116(Pt 13):2655–2663

    PubMed  CAS  Google Scholar 

  • Lee DL, Anya AO (1967) The structure and development of the spermatozoon of Aspiculuris tetraptera (Nematoda). J Cell Sci 2(4):537–544

    PubMed  CAS  Google Scholar 

  • Lewis JD, Abbott DW, Ausio J (2003) A haploid affair: core histone transitions during spermatogenesis. Biochem Cell Biol 81(3):131–140

    PubMed  CAS  Google Scholar 

  • L’Hernault SW (2006) Spermatogenesis. WormBook:1–14

    Google Scholar 

  • L’Hernault SW, Arduengo PM (1992) Mutation of a putative sperm membrane protein in Caenorhabditis elegans prevents sperm differentiation but not its associated meiotic divisions. J Cell Biol 119(1):55–68

    PubMed  Google Scholar 

  • L’Hernault SW, Shakes DC, Ward S (1988) Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics 120(2):435–452

    PubMed  Google Scholar 

  • Li K, Xu EY, Cecil JK, Turner FR, Megraw TL, Kaufman TC (1998) Drosophila centrosomin protein is required for male meiosis and assembly of the flagellar axoneme. J Cell Biol 141(2):455–467

    PubMed  CAS  Google Scholar 

  • Lui DY, Colaiácovo MP (2012) Meiotic development in C. elegans. In: Schedl T (ed) Advances in experimental medicine and biology, Chap. 6. Springer, Boston

    Google Scholar 

  • Maddox PS, Oegema K, Desai A, Cheeseman IM (2004) “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12(6):641–653

    PubMed  CAS  Google Scholar 

  • Maeda I, Kohara Y, Yamamoto M, Sugimoto A (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11(3):171–176

    PubMed  CAS  Google Scholar 

  • Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136(4):656–668

    PubMed  CAS  Google Scholar 

  • Marcello MR, Singaravelu G, Singson A (2012) Fertilization. Advances in Experimental Medicine and Biology 757:321–350. (Chap. 11, this volume) Springer, New York

    Google Scholar 

  • McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205(1):111–128

    PubMed  CAS  Google Scholar 

  • McNally KL, McNally FJ (2005) Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev Biol 282(1):218–230

    PubMed  CAS  Google Scholar 

  • Miller D, Brinkworth M, Iles D (2009) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139(2):287–301

    PubMed  Google Scholar 

  • Miller D, Brinkworth M, Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139(2):287–301

    PubMed  CAS  Google Scholar 

  • Minniti AN, Sadler C, Ward S (1996) Genetic and molecular analysis of spe-27, a gene required for spermiogenesis in Caenorhabditis elegans hermaphrodites. Genetics 143(1):213–223

    PubMed  CAS  Google Scholar 

  • Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7(12):1248–1255

    PubMed  Google Scholar 

  • Morgan DE, Crittenden SL, Kimble J (2010) The C. elegans adult male germline: stem cells and sexual dimorphism. Dev Biol 346(2):204–214

    PubMed  CAS  Google Scholar 

  • Motegi F, Sugimoto A (2006) Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nat Cell Biol 8(9):978–985

    PubMed  CAS  Google Scholar 

  • Muhlrad PJ, Ward S (2002) Spermiogenesis initiation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene. Genetics 161(1):143–155

    PubMed  CAS  Google Scholar 

  • Nance J, Minniti AN, Sadler C, Ward S (1999) spe-12 encodes a sperm cell surface protein that promotes spermiogenesis in Caenorhabditis elegans. Genetics 152(1):209–220

    PubMed  CAS  Google Scholar 

  • Nance J, Davis EB, Ward S (2000) spe-29 encodes a small predicted membrane protein required for the initiation of sperm activation in Caenorhabditis elegans. Genetics 156(4):1623–1633

    PubMed  CAS  Google Scholar 

  • Nelson GA, Ward S (1980) Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell 19(2):457–464

    PubMed  CAS  Google Scholar 

  • Nelson GA, Lew KK, Ward S (1978) Intersex, a temperature-sensitive mutant of the nematode Caenorhabditis elegans. Dev Biol 66(2):386–409

    PubMed  CAS  Google Scholar 

  • Nelson GA, Roberts TM, Ward S (1982) Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin. J Cell Biol 92(1):121–131

    PubMed  CAS  Google Scholar 

  • O’Connell KF, Maxwell KN, White JG (2000) The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. Dev Biol 222(1):55–70

    PubMed  Google Scholar 

  • Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9(9):673–678

    PubMed  CAS  Google Scholar 

  • Orr-Weaver TL, Parfenov VN, Dudina LM, Kostiuchek DF, Gruzova MN, Parfenov V, Potchukalina G, Dudina L, Kostyuchek D, Gruzova M, Sanyal MK, Taymor ML, Berger MJ (1995) Meiosis in Drosophila: seeing is believing. Proc Natl Acad Sci USA 92 (23):10443–10449

    Google Scholar 

  • Pavelec DM, Lachowiec J, Duchaine TF, Smith HE, Kennedy S (2009) Requirement for ERI/DICER complex in endogenous RNAi and sperm development in Caenorhabditis elegans. Genetics 183(4):1283–1295

    PubMed  CAS  Google Scholar 

  • Pelletier L, O’Toole E, Schwager A, Hyman AA, Muller-Reichert T (2006) Centriole assembly in Caenorhabditis elegans. Nature 444(7119):619–623

    PubMed  CAS  Google Scholar 

  • Peters N, Perez DE, Song MH, Liu Y, Muller-Reichert T, Caron C, Kemphues KJ, O’Connell KF (2010) Control of mitotic and meiotic centriole duplication by the Plk4-related kinase ZYG-1. J Cell Sci 123(Pt 5):795–805

    PubMed  CAS  Google Scholar 

  • Reinke V (2002) Functional exploration of the C. elegans genome using DNA microarrays. Nat Genet 32(Suppl):541–546

    PubMed  CAS  Google Scholar 

  • Reinke V, Cutter AD (2009) Germline expression influences operon organization in the Caenorhabditis elegans genome. Genetics 181(4):1219–1228

    PubMed  CAS  Google Scholar 

  • Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJ, Davis EB, Scherer S, Ward S, Kim SK (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6(3):605–616

    PubMed  CAS  Google Scholar 

  • Reinke V, Gil IS, Ward S, Kazmer K (2004) Genome wide germline enriched and sex biased expression profiles in Caenorhabditis elegans. Development 131(2):311–323

    PubMed  CAS  Google Scholar 

  • Roberts TM, Pavalko FM, Ward S (1986) Membrane and cytoplasmic proteins are transported in the same organelle complex during nematode spermatogenesis. J Cell Biol 102(5):1787–1796

    PubMed  CAS  Google Scholar 

  • Rogers E, Bishop JD, Waddle JA, Schumacher JM, Lin R (2002) The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol 157(2):219–229

    PubMed  CAS  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127(6):1193–1207

    PubMed  CAS  Google Scholar 

  • Sadler PL, Shakes DC (2000) Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. Development 127(2):355–366

    PubMed  CAS  Google Scholar 

  • Sanyal MK, Taymor ML, Berger MJ (1976) Cytologic features of oocytes in the adult human ovary. Fertil Steril 27(5):501–510

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296(5576):2176–2178

    PubMed  CAS  Google Scholar 

  • Schumacher JM, Golden A, Donovan PJ (1998) AIR-2: an Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J Cell Biol 143(6):1635–1646

    PubMed  CAS  Google Scholar 

  • Schvarzstein M, Wignall SM, Villeneuve AM (2010) Coordinating cohesion, co-orientation, and congression during meiosis: lessons from holocentric chromosomes. Genes Dev 24(3):219–228

    PubMed  CAS  Google Scholar 

  • Seydoux G, Schedl T (2001) The germline in C. elegans: origins, proliferation, and silencing. Int Rev Cytol 203:139–185

    PubMed  CAS  Google Scholar 

  • Sha K, Fire A (2005) Imprinting capacity of gamete lineages in Caenorhabditis elegans. Genetics 170(4):1633–1652

    PubMed  CAS  Google Scholar 

  • Shakes DC, Ward S (1989) Mutations that disrupt the morphogenesis and localization of a ­sperm-specific organelle in Caenorhabditis elegans. Dev Biol 134(2):307–316

    PubMed  CAS  Google Scholar 

  • Shakes DC, Wu JC, Sadler PL, Laprade K, Moore LL, Noritake A, Chu DS (2009) Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans. PLoS Genet 5(8):e1000611

    PubMed  Google Scholar 

  • Shakes DC, Allen AK, Albert KM, Golden A (2011) emb-1 encodes the APC16 subunit of the Caenorhabditis elegans anaphase-promoting complex. Genetics 189(2):549–560

    PubMed  CAS  Google Scholar 

  • Shepherd AM, Clark SA (1983) The structure and development of the spermatozoon of Aspicularis tetraptera (Nematoda). J Cell Sci 2:537–544

    Google Scholar 

  • Shim YH, Bonner JJ, Blumenthal T (1995) Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast. J Mol Biol 253(5):665–676

    PubMed  CAS  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107(4):465–476

    PubMed  CAS  Google Scholar 

  • Smith JR, Stanfield GM (2011) TRY-5 is a sperm-activating protease in Caenorhabditis elegans seminal fluid. PLoS Genet 7(11):e1002375

    PubMed  CAS  Google Scholar 

  • Smith P, Leung-Chiu WM, Montgomery R, Orsborn A, Kuznicki K, Gressman-Coberly E, Mutapcic L, Bennett K (2002) The GLH proteins, Caenorhabditis elegans P granule components, associate with CSN-5 and KGB-1, proteins necessary for fertility, and with ZYX-1, a predicted cytoskeletal protein. Dev Biol 251(2):333–347

    PubMed  CAS  Google Scholar 

  • Spieth J, Shim YH, Lea K, Conrad R, Blumenthal T (1991) elt-1, an embryonically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family. Mol Cell Biol 11(9):4651–4659

    PubMed  CAS  Google Scholar 

  • Spike C, Meyer N, Racen E, Orsborn A, Kirchner J, Kuznicki K, Yee C, Bennett K, Strome S (2008) Genetic analysis of the Caenorhabditis elegans GLH family of P-granule proteins. Genetics 178(4):1973–1987

    PubMed  CAS  Google Scholar 

  • Stanfield GM, Villeneuve AM (2006) Regulation of sperm activation by SWM-1 is required for reproductive success of C. elegans males. Curr Biol 16(3):252–263

    PubMed  CAS  Google Scholar 

  • Suh N, Blelloch R (2011) Small RNAs in early mammalian development: from gametes to ­gastrulation. Development 138(9):1653–1661

    PubMed  CAS  Google Scholar 

  • Turpeenniemi TA (1998) Ultrastructure of spermatozoa in the nematode Halalaimus dimorphus (Nemata: Oxystominidae). J Nematol 30(4):391–403

    PubMed  CAS  Google Scholar 

  • Varkey JP, Jansma PL, Minniti AN, Ward S (1993) The Caenorhabditis elegans spe-6 gene is required for major sperm protein assembly and shows second site non-complementation with an unlinked deficiency. Genetics 133(1):79–86

    PubMed  CAS  Google Scholar 

  • Varkey JP, Muhlrad PJ, Minniti AN, Do B, Ward S (1995) The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev 9(9):1074–1086

    PubMed  CAS  Google Scholar 

  • Wallenfang MR, Seydoux G (2000) Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process. Nature 408(6808):89–92

    PubMed  CAS  Google Scholar 

  • Wang G, Reinke V (2008) A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol 18(12):861–867

    PubMed  CAS  Google Scholar 

  • Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, Jones SJ, Marra MA, Holt RA, Moerman DG, Hansen D (2009) Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genomics 10:213

    PubMed  Google Scholar 

  • Ward S (1986) The asymmetric localization of gene products during the development of Caenorhabditis elegans spermatozoa. Gametogenesis and the early embryo. A.R. Liss, New York, pp. 55–75

    Google Scholar 

  • Ward S, Carrel JS (1979) Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev Biol 73(2):304–321

    PubMed  CAS  Google Scholar 

  • Ward S, Argon Y, Nelson GA (1981) Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J Cell Biol 91(1):26–44

    PubMed  CAS  Google Scholar 

  • Ward S, Hogan E, Nelson GA (1983) The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev Biol 98(1):70–79

    PubMed  CAS  Google Scholar 

  • Washington NL, Ward S (2006) FER-1 regulates Ca2  +  −  mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci 119 (Pt 12):2552–2562

    Google Scholar 

  • Wignall SM, Villeneuve AM (2009) Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol 11(7):839–844

    PubMed  CAS  Google Scholar 

  • Wolf N, Hirsh D, McIntosh JR (1978) Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. J Ultrastruct Res 63(2):155–169

    PubMed  CAS  Google Scholar 

  • Wu TF, Chu DS (2008) Epigenetic processes implemented during spermatogenesis distinguish the paternal pronucleus in the embryo. Reprod Biomed Online 16(1):13–22

    PubMed  CAS  Google Scholar 

  • Wu JC, Go AC, Samson M, Cintra T, Mirsoian S, Wu TF, Jow MM, Routman EJ, Chu DS (2012) Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Genetics 190(1):143–157

    PubMed  CAS  Google Scholar 

  • Yi K, Buttery SM, Stewart M, Roberts TM (2007) A Ser/Thr kinase required for membrane-­associated assembly of the major sperm protein motility apparatus in the amoeboid sperm of Ascaris. Mol Biol Cell 18(5):1816–1825

    PubMed  CAS  Google Scholar 

  • Yushin VV, Commans A (2005) ltrastructure of sperm development in the free-living marine ­nematode Metachromadora itoi (Chromadoria, Desmodorida). Acta Zoologica 86(4):255–265

    Google Scholar 

  • Zanetti S, Puoti A (2012) Sex determination in the C. elegans germline. Advances in Experimental Medicine and Biology 757:41–69. (Chap. 3, this volume) Springer, New York

    Google Scholar 

  • Zeng Y, Cullen BR (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9(1):112–123

    PubMed  CAS  Google Scholar 

  • Zhu GD, L’Hernault SW (2003) The Caenorhabditis elegans spe-39 gene is required for intracellular membrane reorganization during spermatogenesis. Genetics 165(1):145–157

    PubMed  CAS  Google Scholar 

  • Zhu GD, Salazar G, Zlatic SA, Fiza B, Doucette MM, Heilman CJ, Levey AI, Faundez V, L’Hernault SW (2009) SPE-39 family proteins interact with the HOPS complex and function in lysosomal delivery. Mol Biol Cell 20(4):1223–1240

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank David Greenstein and Harold Smith for sharing data prior to publication. We thank Meghann Shorrock for assistance with figures. We also thank Dana Byrd, Margaret Jow, and Kari Price for critical reading of this manuscript. This work was supported grants from the National Science Foundation to D.S.C. (MCB-0747515) and the National Institutes of Health to D.S.C. (R15 HD068996) and D.C.S. (R15 GM096309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diana S. Chu or Diane C. Shakes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chu, D.S., Shakes, D.C. (2013). Spermatogenesis. In: Schedl, T. (eds) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, vol 757. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4015-4_7

Download citation

Publish with us

Policies and ethics