Skip to main content
Log in

A paternal protein facilitates sperm RNA delivery to regulate zygotic development

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Sperm contributes essential paternal factors, including the paternal genome, centrosome, and oocyte-activation signals, to sexual reproduction. However, it remains unresolved how sperm contributes its RNA molecules to regulate early embryonic development. Here, we show that the Caenorhabditis elegans paternal protein SPE-11 assembles into granules during meiotic divisions of spermatogenesis and later matures into a perinuclear structure where sperm RNAs localize. We reconstitute an SPE-11 liquid-phase scaffold in vitro and find that SPE-11 condensates incorporate the nematode RNA, which, in turn, promotes SPE-11 phase separation. Loss of SPE-11 does not affect sperm motility or fertilization but causes pleiotropic development defects in early embryos, and spe-11 mutant males reduce mRNA levels of genes crucial for an oocyte-to-embryo transition or embryonic development. These results reveal that SPE-11 undergoes phase separation and associates with sperm RNAs that are delivered to oocytes during fertilization, providing insights into how a paternal protein regulates early embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, S., and Hyman, A.A. (2021). Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol 22, 196–213.

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft, N.R., Srayko, M., Kosinski, M.E., Mains, P.E., and Golden, A. (1999). RNA-mediated interference of acdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. Dev Biol 206, 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Baker, M.A., Hetherington, L., Reeves, G.M., and Aitken, R.J. (2008). The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 8, 1720–1730.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, M., Nawy, T., Giglione, C., Galli, M., Meinnel, T., and Lukowitz, W. (2009). Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323, 1485–1488.

    Article  CAS  PubMed  Google Scholar 

  • Ben-David, E., Burga, A., and Kruglyak, L. (2017). A maternal-effect selfish genetic element in Caenorhabditis elegans. Science 356, 1051–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Jülicher, F., and Hyman, A.A. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning, H., and Strome, S. (1996). A sperm-supplied factor required for embryogenesis in C. elegans. Development 122, 391–404.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Wu, X., Wu, H., and Zhang, M. (2020). Phase separation at the synapse. Nat Neurosci 23, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, D.J., Ward, J.D., Reiner, D.J., and Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10, 1028–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, R.E., and Stanfield, G.M. (2014). The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 29, 17–30.

    Article  CAS  PubMed  Google Scholar 

  • Evans, T.C., and Hunter, C.P. (2005). Translational control of maternal RNAs. WormBook doi: https://doi.org/10.1895/wormbook.1.34.1.

  • Gudipati, R.K., Braun, K., Gypas, F., Hess, D., Schreier, J., Carl, S.H., Ketting, R.F., and Großhans, H. (2021). Protease-mediated processing of Argonaute proteins controls small RNA association. Mol Cell 81, 2388–2402.e8.

    Article  CAS  PubMed  Google Scholar 

  • Guven-Ozkan, T., Nishi, Y., Robertson, S.M., and Lin, R. (2008). Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135, 149–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, D.P., Shakes, D.C., Ward, S., and Strome, S. (1989). A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11. Dev Biol 136, 154–166.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Cheng, S., Wang, H., Li, X., Liu, S., Wu, M., Liu, Y., and Wang, X. (2019). Distinct roles of two myosins in C. elegans spermatid differentiation. PLoS Biol 17, e3000211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaramillo-Lambert, A., and Golden, A. (2020). The C-terminus of SPE-11 is required for proper embryonic development in C. elegans. Micropubl Biol 2020.

  • Jiang, L., Zhang, J., Wang, J.J., Wang, L., Zhang, L., Li, G., Yang, X., Ma, X., Sun, X., Cai, J., et al. (2013). Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153, 773–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, W.L., Krizus, A., and Dennis, J.W. (2010). Eggshell chitin and chitin-interacting proteins prevent polyspermy in C. elegans. Curr Biol 20, 1932–1937.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J.Y., Wen, Z., Pan, D., Zhang, Y., Li, Q., Zhong, A., Yu, X., Wu, Y. C., Chen, Y., Zhang, X., et al. (2022). LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science 377, eabj6647.

    Article  CAS  PubMed  Google Scholar 

  • Krauchunas, A.R., Werner, M., Britt, N., Chen, D.S., Maddox, A.S., and Singson, A. (2020). C. elegans CYLC-2 localizes to sperm. Micropubl Biol 2020.

  • L’Hernault, S.W. (2006). Spermatogenesis. WormBook doi: https://doi.org/10.1895/wormbook.1.85.1.

  • Lafontaine, D.L.J., Riback, J.A., Bascetin, R., and Brangwynne, C.P. (2021). The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol 22, 165–182.

    Article  CAS  PubMed  Google Scholar 

  • Lane, M., Robker, R.L., and Robertson, S.A. (2014). Parenting from before conception. Science 345, 756–760.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Zhao, Y., Sun, W., Shimabukuro, K., and Miao, L. (2012). Transformation: how do nematode sperm become activated and crawl? Protein Cell 3, 755–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso, V.P., Parry, J.M., Storer, L., Poggioli, C., Nguyen, K.C.Q., Hall, D.H., and Sundaram, M.V. (2012). Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans. Development 139, 979–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally, K.L., and McNally, F.J. (2005). Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev Biol 282, 218–230.

    Article  CAS  PubMed  Google Scholar 

  • Peng, K., Radivojac, P., Vucetic, S., Dunker, A.K., and Obradovic, Z. (2006). Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rando, O.J. (2012). Daddy issues: paternal effects on phenotype. Cell 151, 702–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roden, C., and Gladfelter, A.S. (2021). RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 22, 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Royal, D.C., Royal, M.A., Wessels, D., L’Hernault, S., and Soll, D.R. (1997). Quantitative analysis of Caenorhabditis elegans sperm motility and how it is affected by mutant sspe11 and unc54. Cell Motil Cytoskeleton 37, 98–110.

    Article  CAS  PubMed  Google Scholar 

  • Sabari, B.R., Dall’Agnese, A., Boija, A., Klein, I.A., Coffey, E.L., Shrinivas, K., Abraham, B.J., Hannett, N.M., Zamudio, A.V., Manteiga, J.C., et al. (2018). Coactivator condensation at superenhancers links phase separation and gene control. Science 361.

  • Schreier, J., Dietz, S., Boermel, M., Oorschot, V., Seistrup, A.S., de Jesus Domingues, A.M., Bronkhorst, A.W., Nguyen, D.A.H., Phillis, S., Gleason, E.J., et al. (2022). Membrane-associated cytoplasmic granules carrying the Argonaute protein WAGO-3 enable paternal epigenetic inheritance in Caenorhabditis elegans. Nat Cell Biol 24, 217–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sendler, E., Johnson, G.D., Mao, S., Goodrich, R.J., Diamond, M.P., Hauser, R., and Krawetz, S.A. (2013). Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41, 4104–4117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Z., Tu, Y., Yang, Y., Liu, Z., Zeng, M., Xu, H., Long, J., Zhang, M., Cai, Y., and Wen, W. (2018). Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division. Nat Commun 9, 737.

    Article  PubMed  PubMed Central  Google Scholar 

  • Si, F., Luo, H., Yang, C., Gong, J., Yan, B., Liu, C., Song, X., and Cao, X. (2023). Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice. Sci China Life Sci 66, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Sönnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.M., Artelt, J., Bettencourt, P., Cassin, E., et al. (2005). Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469.

    Article  PubMed  Google Scholar 

  • Stoeckius, M., Grün, D., and Rajewsky, N. (2014). Paternal RNA contributions in the Caenorhabditis elegans zygote. EMBO J 33, 1740–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama, J., and Onami, S. (2016). The sperm TRP-3 channel mediates the onset of a Ca2+ wave in the fertilized C. elegans oocyte. Cell Rep 15, 625–637.

    Article  CAS  PubMed  Google Scholar 

  • Tintori, S.C., Osborne Nishimura, E., Golden, P., Lieb, J.D., and Goldstein, B. (2016). A transcriptional lineage of the early C. elegans embryo. Dev Cell 38, 430–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, G., Fields, B.D., Spracklin, G., Shukla, A., Phillips, C.M., and Kennedy, S. (2018). Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557, 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward, S., Argon, Y., and Nelson, G.A. (1981). Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J Cell Biol 91, 26–44.

    Article  CAS  PubMed  Google Scholar 

  • Wei, H., and Wen, W. (2021). Phase separation in cell polarity. Biochemistry 60, 2677–2684.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S., Schuster, A., Tang, C., Yu, T., Ortogero, N., Bao, J., Zheng, H., and Yan, W. (2016). Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 143, 635–647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yushin, V.V., and Malakhov, V.V. (2014). The origin of nematode sperm: progenesis at the cellular level. Russ J Mar Biol 40, 71–81.

    Article  Google Scholar 

  • Zhang, W., and Wang, Y. (2023). Activating translation by phase separation: a novel mechanism for driving spermiogenesis. Sci China Life Sci 66, 418–420.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Shi, J., Rassoulzadegan, M., Tuorto, F., and Chen, Q. (2019). Sperm RNA code programmes the metabolic health of offspring. Nat Rev Endocrinol 15, 489–498.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Wang, S., Wu, W., Li, L., Jiang, T., and Zheng, B. (2018). Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nat Commun 9, 5011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10, 1523.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2019YFA0508401), the National Natural Science Foundation of China (31871394, 82121004, 32100538), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), the China Postdoctoral Science Foundation (2022M711844), the Young Elite Scientists Sponsorship Program by CAST (YESS20220102), and ZJ Lab and Shanghai Center for Brain Science and Brain-Inspired Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangshuo Ou or Wenyu Wen.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Huang, S., Chai, Y. et al. A paternal protein facilitates sperm RNA delivery to regulate zygotic development. Sci. China Life Sci. 66, 2342–2353 (2023). https://doi.org/10.1007/s11427-022-2332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2332-5

Navigation