Skip to main content

The Molecular Structure and Gating of Calcium Channels

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 113 Accesses

Abstract

The concentration of cytosolic free calcium is of critical importance for the control of many essential cellular functions. A diverse array of Ca2+ transporting systems acts to maintain the steep concentration gradient between the millimolar concentrations of extracellular Ca2+ and resting intracellular concentrations of about 0.1 uM. These low resting concentrations are maintained by several pumps and exchange mechanisms that transport Ca2+ either out of the cell or into intracellular storage sites. A rise in intracellular calcium to micromolar levels initiates many physiologic responses, including excitation-contraction and excitation-secretion coupling. The influx of calcium ions through calcium-selective channels in the plasma membrane plays an important role in these transient increases in concentration. Although the plasma membrane is normally virtually impermeable to Ca2+, the opening of calcium channels allows Ca2+ to move into the cell down its steep electrochemical gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayer ML, Westbrook GL. Permeation and block of N-methyl-D-aspartic acid channels by divalent cations in mouse cultured central neurons. J Physiol (Lond) 1987; 394:501–527.

    CAS  Google Scholar 

  2. Benham CD, Tsien RW. A novel receptor-operated Ca2+ channel activated by ATP in smooth muscle. Nature 1987; 328:275–278.

    Article  PubMed  CAS  Google Scholar 

  3. Catterall W. Structure and function of voltage-sensitive calcium channels. Science 1988; 242:50–61.

    Article  PubMed  CAS  Google Scholar 

  4. Hosey MM, Lazdunski M. Calcium channels: Molecular pharmacology, structure and regulation. J Membr Biol 1988; 104:81–105.

    Article  PubMed  CAS  Google Scholar 

  5. Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 1989; 51:367–384.

    Article  PubMed  CAS  Google Scholar 

  6. Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci 1990; 13:337–356.

    Article  PubMed  CAS  Google Scholar 

  7. Dascal N. Analysis and functional characteristics of dihydropyridine-sensitive and -insensitive calcium channel proteins. Biochem Pharmacol 1990; 40:1171–1178.

    Article  PubMed  CAS  Google Scholar 

  8. McKenna E, Koch WJ, Slish DF, et al. Toward an understanding of the dihydropyridine-sensitive calcium channel. Biochem Pharmacol 1990; 39:1145–1150.

    Article  PubMed  CAS  Google Scholar 

  9. Tsien RW, Ellinor PT, Hörne WA. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sei 1991; 12:349–354.

    Article  CAS  Google Scholar 

  10. Slish DF, Schultz D, Shwartz A. Molecular biology of the calcium antagonist receptor. Hypertension 1992; 19:19–24.

    PubMed  CAS  Google Scholar 

  11. Miller RJ. Voltage-sensitive calcium channels. J Biol Chem 1992; 267:1403–1406.

    PubMed  CAS  Google Scholar 

  12. Barres BM, Chan LLY, Corey DP. Ion channel expression by white matter glial Type-2 astrocytes and oligodendrocytes. Glia 1988; 1:10–30.

    Article  PubMed  CAS  Google Scholar 

  13. Fukushima Y, Hagiwara S. Voltage gated Ca2+ channel in mouse myeloma cells. Proc Natl Acad Sei USA 1988; 80:2240–2242.

    Article  Google Scholar 

  14. Villereal ML, Jamieson GA. Epidermal growth factor stimulates calcium influx via voltage-sensitive calcium channels in cultured human fibroblasts. J Cell Biochem 1988; 159(suppl 12A):C652. Abstract.

    Google Scholar 

  15. Nowycky MC, Fox AP, Tsien RW. Three types of calcium channel with different agonist sensitivity. Nature 1985; 316:440–443.

    Article  PubMed  CAS  Google Scholar 

  16. Tsien RW, Lipscombe D, Madison DV, et al. Multiple types of neuronal calcium channels and their selective modulators. Trends Neurosci 1988; 11:431–438.

    Article  PubMed  CAS  Google Scholar 

  17. Llinas RR, Sugimori M, Lin JW. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel web spider poison. Proc Natl Acad Sei USA 1989; 86:1689–1693.

    Article  CAS  Google Scholar 

  18. Toggle DJ, Janis RA. Calcium channel ligands. Annu Rev Pharmacol Toxicol 1987; 27:347–369.

    Article  Google Scholar 

  19. Glossmann H, Ferry DR, Striessnig J, et al. Calcium channels and calcium channel drugs: Recent biochemical and biophysical findings. Drug Res 1985; 35:1917–1935.

    CAS  Google Scholar 

  20. Triggle DJ, Rampe D. 1,4-Dihydropyridine activators and antagonists: Structural and functional characteristics. Trends Pharmacol Sei 1989; 10:507–511.

    Article  CAS  Google Scholar 

  21. Fosset M, Jaimovich E, Delpont E, et al. [3H]Nitrendipine receptors in skeletal muscle: Properties and preferential localization in transverse tubules. J Biol Chem 1983; 10:6086–6092.

    Google Scholar 

  22. Campbell KP, Leung A, Sharp AH. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 1988; 11:425–430.

    Article  PubMed  CAS  Google Scholar 

  23. Curtis BM, Catterall WA. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 1984; 23:2113–2118.

    Article  PubMed  CAS  Google Scholar 

  24. Borsotto M, Norman RI, Fosset M, et al. Solubilization of the nitrendipine receptor from skeletal muscle transverse tubule membranes: Interactions with specific inhibitors of the voltage-dependent Ca2+ channel. Eur J Biochem 1984; 142:449–455.

    Article  PubMed  CAS  Google Scholar 

  25. Striessnig J, Moosburger K, Göll A, et al. Stereoselective photoaffinity labelling of the purified 1,4-dihydropyridine receptor of the voltage-dependent calcium channel. Eur J Biochem 1986; 161:603–609.

    Article  PubMed  CAS  Google Scholar 

  26. Striessnig J, Knaus H-G, Grabner M, et al. Photoaffinity labelling of the phenylakylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett 1987; 212:247–253.

    Article  PubMed  CAS  Google Scholar 

  27. Naito K, McKenna E, Schwartz A, et al. Photoaffinity labeling of the purified skeletal muscle calcium channel antagonist receptor by a novel benzothiazepine, [3H]azidobutyryl diltiazem. J Biol Chem 1989; 264:21211–21214.

    PubMed  CAS  Google Scholar 

  28. DeJongh KS, Warner C, Catterall WA. Subunits of purified calcium channels: a2 and 5 are encoded by the same gene. J Biol Chem 1990; 265:14738–14741.

    CAS  Google Scholar 

  29. Jay SD, Sharp AH, Kahl S, et al. Structural characterization of the dihydropyridine-sensitive calcium channel a2 subunit and the associated 5 peptides. J Biol Chem 1991; 3287–3293.

    Google Scholar 

  30. Tanabe T, Takeshima H, Mikami A, et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987; 328:313–318.

    Article  PubMed  CAS  Google Scholar 

  31. Ellis SB, Williams ME, Ways NR, et al. Sequence and expression of mRNAs encoding the a! and a2 subunits of a DHP-sensitive calcium channel. Science 1988; 241:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  32. Jay SD, Ellis SB, McCue AF, et al. Primary structure of the y subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1990; 248:490–492.

    Article  PubMed  CAS  Google Scholar 

  33. Ruth P, Röhrkasten A, Biel M, et al. Primary structure of the ß subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1989; 245:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  34. Nöda M, Shimizu S, Tanabe T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 1984; 312:121–127.

    Article  PubMed  Google Scholar 

  35. Regulla S, Schnieder T, Nastainczyk W, et al. Identification of the site of interaction of the dihydropyridine calcium channel blockers nitrendipine and azidopine with the calcium-channel a1 subunit. EMBO J 1991; 10:45–49.

    PubMed  CAS  Google Scholar 

  36. Rhodes DG, Sarmiento JG, Herbette LG. Kinetics of binding of membrane-active drugs to receptor sites. Diffusion limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonist to their active site. Mol Pharmacol 1985; 27:612–623.

    PubMed  CAS  Google Scholar 

  37. Kass RS, Arena JP, Chin S. Block of L-type calcium channels by charged dihydropyridines: Sensitivity to side of application and calcium. J Gen Physiol 1991; 98:63–75.

    Article  PubMed  CAS  Google Scholar 

  38. Nakayama H, Taki M, Striessnig J, et al. Identification of 1,4-dihydropyridine binding regions within the a2 subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazepine. Proc Natl Acad Sei USA 1991; 88:9203–9207.

    Article  CAS  Google Scholar 

  39. Striessnig J, Murphy BJ, Catterall WA. Dihydropyridine receptor of L-type Ca2+ channels: Identification of binding domains for [3H](+)-PN200–110 and [3H]azidopine within the a1 subunit. Proc Natl Acad Sei USA 1991; 88:10769–10773.

    Article  CAS  Google Scholar 

  40. Affolter H, Coronado R. Sidedness of reconstituted calcium channels from muscle transverse tubules as determined by D600 and D890 blockade. Biophys J 1986; 49:767–771.

    Article  PubMed  CAS  Google Scholar 

  41. Striessnig J, Glossmann H, Catterall WA. Identification of a phenylalkylamine binding region within the a1 subunit of skeletal muscle Ca2+ channels. Proc Natl Acad Sei USA 1990; 87:9108–9112.

    Article  CAS  Google Scholar 

  42. Dunn SMJ, Bladen C. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: Evidence for low affinity sites and for the involvement of G proteins. Biochemistry 1991; 30:5716–5721.

    Article  PubMed  CAS  Google Scholar 

  43. Dunn SMJ, Bladen C. Low affinity sites for 1,4-dihydropyridines in skeletal muscle transverse tubule membranes revealed by changes in the fluorescence of felodipine. Biochemistry 1992; 31:4039–4045.

    Article  PubMed  CAS  Google Scholar 

  44. Brown AM, Kunze DL, Yatani A. Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guinea pig. J Physiol 1986; 379:475–514.

    Google Scholar 

  45. Ohkusa T, Carlos AD, Kang J-J, et al. Effects of dihydropyridines on calcium release from the isolated membrane complex consisting of the transverse tubule and sarcoplasmic reticulum. Biochem Biophys Res Commun 1991; 175:271–276.

    Article  PubMed  CAS  Google Scholar 

  46. Fleckenstein A, Fleckenstein-Grün G. Effects of and the mechanism of action of calcium antagonists and antianginal agents. In: Sperelakis N, ed. Physiology and Pathophysiology of the Heart. Norwell, Boston, MA: Kluwer Academic; 1989:471–491.

    Google Scholar 

  47. Bers DM. Excitation-Contraction Coupling and Cardiac Contractile Force. Norwell, Boston, MA: Kluwer Academic; 1991.

    Google Scholar 

  48. Armstrong CM, Bezanilla FM, Horowitcz P. Twitches in the presence of ethylene glycol bis-(aminoethylether)-N, N’-tetraacetic acid. Biochim Biophys Acta 1972; 267:605–608.

    Article  PubMed  CAS  Google Scholar 

  49. Frank GB. Roles of extracellular and “trigger” calcium ions in excitation-contraction coupling in skeletal muscle. Can J Physiol Pharmacol 1982; 60:427–439.

    Article  PubMed  CAS  Google Scholar 

  50. Lutgau HC, Gottschalk G, Berwe U. The effect of calcium and calcium antagonist on excitation-contraction coupling. Can J Physiol Pharmacol 1986; 60:717–723.

    Google Scholar 

  51. Beaty GN, Cota G, Nicola Siri L, et al. Skeletal muscle Ca2+ channels. In: Venter JC, Triggle D, eds. Structure and Physiology of the Slow Inward Calcium Channel. New York: Aian R 1987:123–140.

    Google Scholar 

  52. Schwartz LM, McCleskey EW, Palade PT. Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 1985; 314:747–751.

    Article  PubMed  CAS  Google Scholar 

  53. Lamb GD. Ca2+ channels or voltage-sensors? Nature 1991; 352:113.

    Article  PubMed  CAS  Google Scholar 

  54. Rios E, Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 1987; 325:717–720.

    Article  PubMed  CAS  Google Scholar 

  55. DeJongh KS, Merrick DK, Catterall WA. Subunits of purified calcium channels: A 212 kDa form of a1 and partial amino acid sequence of a phosphorylation site of an independent ß subunit. Proc Natl Acad Sei USA 1989; 86:8585–8589.

    Article  CAS  Google Scholar 

  56. Curtis BM, Catterall WA. Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. Biochemistry 1986; 25:3077–3083.

    Article  PubMed  CAS  Google Scholar 

  57. Gutierrez LM, Brawley RM, Hosey MM. Dihydropyridine sensitive calcium channels from skeletal muscle. I. Roles of subunits in channel activity. J Biol Chem 1991; 266:3287–3293.

    Google Scholar 

  58. Nunoki K, Florio V, Catterall WA. Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc Natl Acad Sei USA 1989; 86:6816–6820.

    Article  CAS  Google Scholar 

  59. Dunn SMJ. Voltage-dependent calcium channels in skeletal muscle transverse tubules: Measurements of calcium efflux in membrane vesicles. J Biol Chem 1989; 264:11053–11060.

    PubMed  CAS  Google Scholar 

  60. Mikami A, Imoto K, Tanabe T, et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989; 340:230–233.

    Article  PubMed  CAS  Google Scholar 

  61. Snutch TP, Leonard JP, Gilbert MM, et al. Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sei USA 1990; 87:3391–3395.

    Article  CAS  Google Scholar 

  62. Biel M, Ruth P, Hullin R, et al. Primary structure and functional expression of a high voltage-activated calcium channel from rabbit lung. FEBS Lett 1990; 269:409–412.

    Article  PubMed  CAS  Google Scholar 

  63. Snutch TP, Tomlinson WJ, Leonard JP, et al. Distinct calcium channels are generated by alternative splicing and are differentially expressed in mammalian CNS. Neuron 1991; 7:45–57.

    Article  PubMed  CAS  Google Scholar 

  64. Koch WJ, Ellinor PT, Schwartz A. cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. J Biol Chem 1990; 265:17786–17791.

    PubMed  CAS  Google Scholar 

  65. Hui A, Ellinor PT, Krizanova O, et al. Molecular cloning of multiple subtypes of a novel rat brain isoform of the a1 subunit of the voltage-dependent calcium channel. Neuron 1991; 7:35–46.

    Article  PubMed  CAS  Google Scholar 

  66. Williams ME, Feldman DH, McCue AF, et al. Structure and functional expression of a1, a2 and ß subunits of a novel human neuronal calcium channel subtype. Neuron 1992; 8:71–84.

    Article  PubMed  CAS  Google Scholar 

  67. Seino S, Chen L, Seino M, et al. Cloning of the a1 subunit of a voltage-dependent calcium channel expressed in pancreatic ß cells. Proc Natl Acad Sei USA 1992; 89:584–588.

    Article  CAS  Google Scholar 

  68. Mori Y, Friedrich T, Kim MS, et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350:398–402.

    Article  PubMed  CAS  Google Scholar 

  69. Perez-Reyes E, Wei X, Castellano A, et al. Molecular diversity of L-type calcium channels. J Biol Chem 1990; 265:20430–20436.

    PubMed  CAS  Google Scholar 

  70. Swandulla D, Armstrong CM. Fast deactivating calcium channels in chick sensory neurons. J Gen Physiol 1988; 92:197–218.

    Article  PubMed  CAS  Google Scholar 

  71. Blaustein MP, Creutzfeldt O, Grunicke H, et al. Reviews of physiology, biochemistry and pharmacology. Heidelberg: Springer-Verlag; 1990:107–207.

    Google Scholar 

  72. Gutnick MJ, Lux HD, Swandulla D, et al. Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones. J Physiol (Lond) 1989; 412:197–220.

    CAS  Google Scholar 

  73. Porzig H. Pharmacological modulation of voltage-dependent calcium channels in intact cells. In: Blaustein MP, Creutzfeldt O, Grunicke H, et al., eds. Reviews of Physiology, Biochemistry and Pharmacology. Heidelberg: Springer-Verlag; 1990:209–262.

    Google Scholar 

  74. Hagiwara N, Irisawa H, Kameyama M. Contributions of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol (Lond) 1988; 395:233–253.

    CAS  Google Scholar 

  75. Nilius B, Hess P, Lansman JB, et al. A novel type of cardiac calcium channel in ventricular cells. Nature 1985; 316:443–446.

    Article  PubMed  CAS  Google Scholar 

  76. Cota G, Stefani E. A fast-activated inward calcium current in twitch muscle fibres of the frog (Rana montezume). J Physiol (Lond) 1986; 370:151–163.

    CAS  Google Scholar 

  77. Hirning LD, Fox AP, McCleskey EW, et al. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 1988; 239:57–61.

    Article  PubMed  CAS  Google Scholar 

  78. Cruz LJ, Olivera BM. Calcium channel antagonists: oo-Conotoxin defines a new high affinity site. J Biol Chem 1986; 261:6230–6233.

    PubMed  CAS  Google Scholar 

  79. Miller RJ. Multiple calcium channels and neuronal function. Science 1987; 235:46–52.

    Article  PubMed  CAS  Google Scholar 

  80. Kerr LM, Yashikiami D. A venom peptide with a novel presynaptic blocking action. Nature 1984; 308:282–284.

    Article  PubMed  CAS  Google Scholar 

  81. Quastel DM, Saint DA, Guan YY. Does the motor nerve terminal have only one neurotransmitter release system and only one species of Ca2+ channel. Soc Neurosci Abst 1986; 12:28.

    Google Scholar 

  82. Nachsen DA. The early time course of potassium-stimulated calcium uptake in presynaptic nerve terminals isolated from rat brain. J Physiol 1985; 361:251–268.

    Google Scholar 

  83. Reynolds IJ, Wagner JA, Snyder SH, et al. Brain voltage-sensitive calcium channel subtypes differentiated by co-conotoxin fraction GVIA. Proc Natl Acad Sei USA 1986; 83:8804–8807.

    Article  CAS  Google Scholar 

  84. Middlemiss DN, Spedding M. A functional correlate for the dihydropyridine binding site in rat brain. Nature 1985; 314:94–96.

    Article  PubMed  CAS  Google Scholar 

  85. Wagner JA, Snowman AM, Bismas A. co-Conotoxin binding to a high-affinity receptor in brain: Characterization, calcium sensitivity and solubilization. J Neurosci 1988; 8:3354–3359.

    PubMed  CAS  Google Scholar 

  86. Perez-Reyes E, Kim HS, Lacerda AE, et al. Induction of calcium currents by the expression of the a1 subunit of the dihydropyridine receptor from skeletal muscle. Nature 1989; 340:233–236.

    Article  PubMed  CAS  Google Scholar 

  87. Lacerda AE, Kim HS, Ruth P, et al. Normalization of current kinetics by interaction between the a1 and ß subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 1991; 352:527–530.

    Article  PubMed  CAS  Google Scholar 

  88. Knudson CM, Chaudhari N, Sharp AH, et al. Specific absence of the a1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem 1989; 264:1345–1348.

    PubMed  CAS  Google Scholar 

  89. Tanabe T, Beam KG, Powell JA, et al. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dyhydropyridine receptor complementary DNA. Nature 1988; 336:134–139.

    Article  PubMed  CAS  Google Scholar 

  90. Tanabe T, Mikami A, Numa S, et al. Cardiac type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 1990; 344:451–453.

    Article  PubMed  CAS  Google Scholar 

  91. Tanabe T, Beam KG, Adams BA, et al. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 1990; 346:567–569.

    Article  PubMed  CAS  Google Scholar 

  92. Tanabe T, Adams BA, Numa S, et al. Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 1991; 352:800–803.

    Article  PubMed  CAS  Google Scholar 

  93. Ahlijanian MK, Westenbroek RE, Catterall WA. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord and retina. Neuron 1990; 4:819–832.

    Article  PubMed  CAS  Google Scholar 

  94. Singer D, Biel M, Lotan I, et al. The roles of the subunits in the function of the calcium channel. Science 1991; 253:1499–1500.

    Article  Google Scholar 

  95. Varadi G, Lory P, Schultz D, et al. Acceleration of activation and inactivation by the ß subunit of the skeletal muscle calcium channel. Nature 1991; 352:159–162.

    Article  PubMed  CAS  Google Scholar 

  96. Brum G, Flockerzi V, Hofmann F, et al. Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pfluegers Arch 1983; 398:147–154.

    Article  CAS  Google Scholar 

  97. Lai Y, Seagar MJ, Takahashi M, et al. Cyclic AMP-dependent phosphorylation of two size forms of a1 subunits of L-type calcium channels in rat skeletal muscle cells. J Biol Chem 1991; 265:20839–20848.

    Google Scholar 

  98. Mundina-Weilenmann C, Chang CF, Guitterez LM, et al. Demonstration of phosphorylation of dihydropyridine-sensitive calcium channels in chick skeletal muscle and the resultant activation of channels after reconstitution. J Biol Chem 1991; 266:4067–4073.

    PubMed  CAS  Google Scholar 

  99. Ferrante J, Triggle DJ. Drug- and disease-induced regulation of voltage-dependent calcium channels. Pharmacol Reviews 1990; 42:29–44.

    CAS  Google Scholar 

  100. Yatani A, Codina J, Reeves GP, et al. A G protein directly regulates mammalian calcium channels. Science 1987; 238:1288–1292.

    Article  PubMed  CAS  Google Scholar 

  101. Yatani A, Imoto Y, Codina J, et al. The stimulatory G protein of adenylate cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels: Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J Biol Chem 1988; 263:9887–9895.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dunn, S.M.J., Bhat, M.B., Öz, A.M. (1994). The Molecular Structure and Gating of Calcium Channels. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics