Skip to main content

Standard Monitoring Techniques in the Cardiac Intensive Care Unit

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care
  • 66 Accesses

Abstract

Bedside monitoring is a vital component of any intensive care unit. It is often what separates intensive care versus nonintensive hospitalization. The vast amount of invasive and noninvasive monitoring techniques alert the patient’s care team to changes in the physiological state of the patient and assess the response to interventions. Pediatric patients with heart disease are at risk for significant morbidities and mortalities, especially in the immediate postoperative period. Therefore, close monitoring is paramount to delivering the best care in this population. This chapter outlines the most common techniques of monitoring critically ill pediatric cardiac patients. It will explore not only the information gained from each modality but also discuss its limitations. How each modality can help direct care with examples specific to children with heart disease is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Makhoul M, Oster M, Fischbach P, Das S, Deshpande S (2013) Junctional ectopic tachycardia after congenital heart surgery in the current surgical era. Pediatr Cardiol 34(2):370–374

    Article  PubMed  Google Scholar 

  2. Shamszad P, Cabrera AG, Kim JJ et al (2012) Perioperative atrial tachycardia is associated with increased mortality in infants undergoing cardiac surgery. J Thorac Cardiovasc Surg 144:396–401

    Article  PubMed  Google Scholar 

  3. Mildh L, Hiippala A, Rautiainen P, Pettila V, Sairanen H, Happonen JM (2011) Junctional ectopic tachycardia after surgery for congenital heart disease: incidence, risk factors and outcome. Eur J Cardiothorac Surg 39:75–80

    Article  PubMed  Google Scholar 

  4. Grosse-Wortmann L, Kreitz S, Grabitz RG et al (2010) Prevalence of and risk factors for perioperative arrhythmias in neonates and children after cardiopulmonary bypass: continuous holter monitoring before and for three days after surgery. J Cardiothorac Surg 5:85

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kurer CC, Tanner CS, Norwood WI, Vetter VL (1990) Perioperative arrhythmias after Fontan repair. Circulation 82:IV190–IV194

    CAS  PubMed  Google Scholar 

  6. Lammers A, Kaemmerer H, Hollweck R et al (2006) Impaired cardiac autonomic nervous activity predicts sudden cardiac death in patients with operated and unoperated congenital cardiac disease. J Thorac Cardiovasc Surg 132:647–655

    Article  PubMed  Google Scholar 

  7. Goldstein B, Fiser DH, Kelly MM, Mickelsen D, Ruttimann U, Pollack MM (1998) Decomplexification in critical illness and injury: relationship between heart rate variability, severity of illness, and outcome. Crit Care Med 26:352–357

    Article  CAS  PubMed  Google Scholar 

  8. Aoyagi T (2003) Pulse oximetry: its invention, theory, and future. J Anesth 17:259–266

    Article  PubMed  Google Scholar 

  9. Peuster M, Fink C, Bertram H, Paul T, Hausdorf G (1998) Transcatheter recanalization and subsequent stent implantation for the treatment of early postoperative thrombosis of modified Blalock-Taussig shunts in two children. Catheter Cardiovasc Diagn 45:405–408

    Article  CAS  Google Scholar 

  10. Zijlstra WG, Buursma A, Meeuwsen-van der Roest WP (1991) Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem 37:1633–1638

    Article  CAS  PubMed  Google Scholar 

  11. Sinex JE (1999) Pulse oximetry: principles and limitations. Am J Emerg Med 17:59–67

    Article  CAS  PubMed  Google Scholar 

  12. Barker SJ, Tremper KK (1987) The effect of carbon monoxide inhalation on pulse oximetry and transcutaneous PO2. Anesthesiology 66:677–679

    Article  CAS  PubMed  Google Scholar 

  13. Barker SJ, Tremper KK (1987) Pulse oximetry: applications and limitations. Int Anesthesiol Clin 25:155–175

    Article  CAS  PubMed  Google Scholar 

  14. Schmitt HJ, Schuetz WH, Proeschel PA, Jaklin C (1993) Accuracy of pulse oximetry in children with cyanotic congenital heart disease. J Cardiothorac Vasc Anesth 7:61–65

    Article  CAS  PubMed  Google Scholar 

  15. Zonios G, Shankar U, Iyer VK (2004) Pulse oximetry theory and calibration for low saturations. IEEE Trans Biomed Eng 51:818–822

    Article  PubMed  Google Scholar 

  16. Nickerson BG, Sarkisian C, Tremper K (1988) Bias and precision of pulse oximeters and arterial oximeters. Chest 93:515–517

    Article  CAS  PubMed  Google Scholar 

  17. Feiner JR, Severinghaus JW, Bickler PE (2007) Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth Analg 105:S18–S23, tables of contents

    Article  PubMed  Google Scholar 

  18. Bickler PE, Feiner JR, Severinghaus JW (2005) Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology 102:715–719

    Article  PubMed  Google Scholar 

  19. Callahan JM (2008) Pulse oximetry in emergency medicine. Emerg Med Clin North Am 26:869–879, vii

    Article  PubMed  Google Scholar 

  20. Stewart KG, Rowbottom SJ (1991) Inaccuracy of pulse oximetry in patients with severe tricuspid regurgitation. Anaesthesia 46:668–670

    Article  CAS  PubMed  Google Scholar 

  21. Cannesson M, Henaine R, Di Filippo S et al (2008) Clinical usefulness of new-generation pulse oximetry in the paediatric cardiac surgery setting. Ann Fr Anesth Reanim 27:808–812

    Article  CAS  PubMed  Google Scholar 

  22. Lampert R, Brandt L (1993) The effect of hyperbilirubinemia on the measurement of oxygenated hemoglobin (O2Hb), carboxyhemoglobin (COHb) and methemoglobin (MetHb) using multiwavelength oximeters in mixed venous blood. Anaesthesist 42:702–709

    CAS  PubMed  Google Scholar 

  23. Ramsing T, Rosenberg J (1992) Pulse oximetry in severe anaemia. Intensive Care Med 18:125–126

    Article  CAS  PubMed  Google Scholar 

  24. Kirlangitis JJ, Middaugh RE, Zablocki A, Rodriquez F (1990) False indication of arterial oxygen desaturation and methemoglobinemia following injection of methylene blue in urological surgery. Mil Med 155:260–262

    Article  CAS  PubMed  Google Scholar 

  25. Poets CF, Southall DP (1994) Noninvasive monitoring of oxygenation in infants and children: practical considerations and areas of concern. Pediatrics 93:737–746

    CAS  PubMed  Google Scholar 

  26. Petterson MT, Begnoche VL, Graybeal JM (2007) The effect of motion on pulse oximetry and its clinical significance. Anesth Analg 105:S78–S84

    Article  PubMed  Google Scholar 

  27. Mannheimer PD (2007) The light-tissue interaction of pulse oximetry. Anesth Analg 105:S10–S17

    Article  PubMed  Google Scholar 

  28. Salyer JW (2003) Neonatal and pediatric pulse oximetry. Respir Care 48:386–396, discussion 397–398

    PubMed  Google Scholar 

  29. Talke P, Stapelfeldt C (2006) Effect of peripheral vasoconstriction on pulse oximetry. J Clin Monit Comput 20:305–309

    Article  PubMed  Google Scholar 

  30. Gehring H, Hornberger C, Matz H, Konecny E, Schmucker P (2002) The effects of motion artifact and low perfusion on the performance of a new generation of pulse oximeters in volunteers undergoing hypoxemia. Respir Care 47:48–60

    PubMed  Google Scholar 

  31. Beattie LM, McLeod KA (2009) Prostaglandin E2 after septostomy for simple transposition. Pediatr Cardiol 30:447–451

    Article  PubMed  Google Scholar 

  32. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  CAS  PubMed  Google Scholar 

  33. Nollert G, Jonas RA, Reichart B (2000) Optimizing cerebral oxygenation during cardiac surgery: a review of experimental and clinical investigations with near infrared spectrophotometry. Thorac Cardiovasc Surg 48:247–253

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman GM, Stuth EA, Jaquiss RD et al (2004) Changes in cerebral and somatic oxygenation during stage 1 palliation of hypoplastic left heart syndrome using continuous regional cerebral perfusion. J Thorac Cardiovasc Surg 127:223–233

    Article  PubMed  Google Scholar 

  35. Kim MB, Ward DS, Cartwright CR, Kolano J, Chlebowski S, Henson LC (2000) Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J Clin Monit Comput 16:191–199

    Article  CAS  PubMed  Google Scholar 

  36. Bernal NP, Hoffman GM, Ghanayem NS, Arca MJ (2010) Cerebral and somatic near-infrared spectroscopy in normal newborns. J Pediatr Surg 45:1306–1310

    Article  PubMed  Google Scholar 

  37. Kurth CD, Steven JL, Montenegro LM et al (2001) Cerebral oxygen saturation before congenital heart surgery. Ann Thorac Surg 72:187–192

    Article  CAS  PubMed  Google Scholar 

  38. Abdul-Khaliq H, Troitzsch D, Berger F, Lang PE (2000) Regional transcranial oximetry with near infrared spectroscopy (NIRS) in comparison with measuring oxygen saturation in the jugular bulb in infants and children for monitoring cerebral oxygenation. Biomed Tech Biomed Eng 45:328–332

    Article  CAS  Google Scholar 

  39. Nagdyman N, Ewert P, Peters B, Miera O, Fleck T, Berger F (2008) Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Paediatr Anaesth 18:160–166

    PubMed  Google Scholar 

  40. Nagdyman N, Fleck T, Schubert S et al (2005) Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children. Intensive Care Med 31:846–850

    Article  PubMed  Google Scholar 

  41. Johnson BA, Hoffman GM, Tweddell JS et al (2009) Near-infrared spectroscopy in neonates before palliation of hypoplastic left heart syndrome. Ann Thorac Surg 87:571–577, discussion 577–579

    Article  PubMed  Google Scholar 

  42. Li J, Van Arsdell GS, Zhang G et al (2006) Assessment of the relationship between cerebral and splanchnic oxygen saturations measured by near-infrared spectroscopy and direct measurements of systemic haemodynamic variables and oxygen transport after the Norwood procedure. Heart 92:1678–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Phelps HM, Mahle WT, Kim D et al (2009) Postoperative cerebral oxygenation in hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg 87:1490–1494

    Article  PubMed  Google Scholar 

  44. Itu L, Sharma P, Ralovich K et al (2013) Non-invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements. Ann Biomed Eng 41(4):669–681

    Article  PubMed  Google Scholar 

  45. Park MK, Menard SW, Yuan C (2001) Comparison of auscultatory and oscillometric blood pressures. Arch Pediatr Adolesc Med 155:50–53

    Article  CAS  PubMed  Google Scholar 

  46. Dannevig I, Dale HC, Liestol K, Lindemann R (2005) Blood pressure in the neonate: three non-invasive oscillometric pressure monitors compared with invasively measured blood pressure. Acta Paediatr 94:191–196

    Article  PubMed  Google Scholar 

  47. Roberts LN, Smiley JR, Manning GW (1953) A comparison of direct and indirect blood-pressure determinations. Circulation 8:232–242

    Article  CAS  PubMed  Google Scholar 

  48. Van Bergen FH, Weatherhead DS, Treloar AE, Dobkin AB, Buckley JJ (1954) Comparison of indirect and direct methods of measuring arterial blood pressure. Circulation 10:481–490

    Article  Google Scholar 

  49. Dahlgren G, Veintemilla F, Settergren G, Liska J (1991) Left ventricular end-systolic pressure estimated from measurements in a peripheral artery. J Cardiothorac Vasc Anesth 5:551–553

    Article  CAS  PubMed  Google Scholar 

  50. Mortensen JD (1967) Clinical sequelae from arterial needle puncture, cannulation, and incision. Circulation 35:1118–1123

    Article  CAS  PubMed  Google Scholar 

  51. Sellden H, Nilsson K, Larsson LE, Ekstrom-Jodal B (1987) Radial arterial catheters in children and neonates: a prospective study. Crit Care Med 15:1106–1109

    Article  CAS  PubMed  Google Scholar 

  52. Norwood SH, Cormier B, McMahon NG, Moss A, Moore V (1988) Prospective study of catheter-related infection during prolonged arterial catheterization. Crit Care Med 16:836–839

    Article  CAS  PubMed  Google Scholar 

  53. Furfaro S, Gauthier M, Lacroix J, Nadeau D, Lafleur L, Mathews S (1991) Arterial catheter-related infections in children. A 1-year cohort analysis. Am J Dis Child 145:1037–1043

    Article  CAS  PubMed  Google Scholar 

  54. Bedford RF (1977) Radial arterial function following percutaneous cannulation with 18- and 20-gauge catheters. Anesthesiology 47:37–39

    Article  CAS  PubMed  Google Scholar 

  55. Randolph AG, Cook DJ, Gonzales CA, Pribble CG (1996) Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med 24:2053–2058

    Article  CAS  PubMed  Google Scholar 

  56. Davison DL, Chawla LS, Selassie L et al (2010) Femoral-based central venous oxygen saturation is not a reliable substitute for subclavian/internal jugular-based central venous oxygen saturation in patients who are critically ill. Chest 138:76–83

    Article  PubMed  Google Scholar 

  57. Sharkey SW (1987) Beyond the wedge: clinical physiology and the swan-Ganz catheter. Am J Med 83:111–122

    Article  CAS  PubMed  Google Scholar 

  58. Rice WP, Fernandez EG, Jarog D, Jensen A (2000) A comparison of hydrostatic leveling methods in invasive pressure monitoring. Crit Care Nurse 20(20):22–30

    Google Scholar 

  59. Introna RP, Martin DC, Pruett JK, Philpot TE, Johnston JF (1990) Percutaneous pulmonary artery catheterization in pediatric cardiovascular anesthesia: insertion techniques and use. Anesth Analg 70:562–566

    Article  CAS  PubMed  Google Scholar 

  60. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    Article  CAS  PubMed  Google Scholar 

  61. Stetz CW, Miller RG, Kelly GE, Raffin TA (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 126:1001–1004

    CAS  PubMed  Google Scholar 

  62. Seear MD, D’Orsogna L, Sandor GG, de Souza E, Popov R (1991) Doppler-derived mean aortic flow velocity in children: an alternative to cardiac index. Pediatr Cardiol 12:197–200

    Article  CAS  PubMed  Google Scholar 

  63. Bogert LW, Wesseling KH, Schraa O et al (2010) Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia 65:1119–1125

    Article  CAS  PubMed  Google Scholar 

  64. Marik PE (1999) Pulmonary artery catheterization and esophageal doppler monitoring in the ICU. Chest 116:1085–1091

    Article  CAS  PubMed  Google Scholar 

  65. Jansen JR, Schreuder JJ, Mulier JP, Smith NT, Settels JJ, Wesseling KH (2001) A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br J Anaesth 87:212–222

    Article  CAS  PubMed  Google Scholar 

  66. Godje O, Hoke K, Goetz AE et al (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30:52–58

    Article  PubMed  Google Scholar 

  67. Fakler U, Pauli C, Balling G et al (2007) Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery. J Thorac Cardiovasc Surg 133:224–228

    Article  CAS  PubMed  Google Scholar 

  68. Morales DL, Carberry KE, Heinle JS, McKenzie ED, Fraser CD Jr, Diaz LK (2008) Extubation in the operating room after Fontan’s procedure: effect on practice and outcomes. Ann Thorac Surg 86:576–581

    Article  PubMed  Google Scholar 

  69. Sivarajan VB, Bohn D (2011) Monitoring of standard hemodynamic parameters: heart rate, systemic blood pressure, atrial pressure, pulse oximetry, and end-tidal CO2. Pediatr Crit Care Med 12:S2–S11

    Article  PubMed  Google Scholar 

  70. Jaffe MB (2008) Infrared measurement of carbon dioxide in the human breath: “breathe-through” devices from Tyndall to the present day. Anesth Analg 107:890–904

    Article  PubMed  Google Scholar 

  71. Tobias JD, Flanagan JF, Wheeler TJ, Garrett JS, Burney C (1994) Noninvasive monitoring of end-tidal CO2 via nasal cannulas in spontaneously breathing children during the perioperative period. Crit Care Med 22:1805–1808

    Article  CAS  PubMed  Google Scholar 

  72. Fletcher R (1989) Relationship between alveolar deadspace and arterial oxygenation in children with congenital cardiac disease. Br J Anaesth 62:168–176

    Article  CAS  PubMed  Google Scholar 

  73. Schuller JL, Bovill JG, Nijveld A (1985) End-tidal carbon dioxide concentration as an indicator of pulmonary blood flow during closed heart surgery in children. A report of two cases. Br J Anaesth 57:1257–1259

    Article  CAS  PubMed  Google Scholar 

  74. Rusin CG, Acosta SI, Shekerdemian LS et al (2016) Prediction of imminent, severe deterioration of children with parallel circulation using real-time processing of physiological data. JCTVS 152(1):171–177

    Google Scholar 

  75. Olive MK, Owen GE (2018) Current monitoring and innovative predictive modeling to improve care in the pediatric cardiac intensive care unit. Transl Pediatr 7(2):120–128

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan J. Butts .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Butts, R.J., Atz, A.M. (2020). Standard Monitoring Techniques in the Cardiac Intensive Care Unit. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_103-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_103-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics