Skip to main content
Log in

Optimizing Transcranial Direct Current Stimulation Protocols to Promote Long-Term Learning

  • Original Article
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that has the potential to induce polarity-specific changes in neural activity within targeted brain regions. There is growing interest in the use of this technology for the enhancement of higher cognitive functions, and application of tDCS directly before or concomitant with task performance has shown promise in modulating a range of behavioral outcomes, including motor skill acquisition, working memory performance, and implicit and explicit learning. The proposed mechanism for the observed enhancements is a temporary and targeted shift in the excitability of the cortical regions that subserve the relevant tasks, lasting from minutes up to about an hour after cessation of stimulation. Although empirical work does support at least a partial role for this mechanism, an arguably more potent but relatively underexplored phenomenon is thought to occur in the hours or days after stimulation—that is, a facilitation of consolidative processes. Here, we review the literature describing the nature of tDCS-enhanced consolidation and argue that some of the mixed results among the single-session studies that currently dominate the extant literature may be explained by a failure to take advantage of these potentially powerful offline effects. Accordingly, we further contend that the full potential of tDCS cannot be truly realized without a longitudinal design which allows for tDCS to act directly upon learning by promoting consolidation between sessions. Finally, we review preliminary evidence that these consolidation effects can be even further enhanced via strategically spaced out stimulation sessions, which take advantage of a long-held tenet in the literature that distributed learning produces better outcomes than massed learning. We conclude by proposing potential study designs to encourage the use of tDCS as more than merely a method to promote temporary enhancement, but also a technique to enhance long-term learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In both studies, the first session was the only one that showed within-session effects, suggesting that online effects may saturate early on in an intervention, or may not be reliable. Additionally, we note that a similar paradigm (Prichard et al. 2014) with a different motor task showed predominantly online, but not offline, effects, suggesting some task-specificity in the degree of consolidation.

  2. Hill et al. (2016) actually found a significant tDCS effect only with offline stimulation, but not online, in healthy young adults. However, the effect sizes are comparable and not different from each other. Also, sample sizes are trhree to six times greater in the offline studies compared to online, thus biasing interpretations based on significance alone. We interpret the data to suggest no difference between online and offline stimulation.

References

  • Alonzo, A., Brassil, J., Taylor, J. L., Martin, D., & Loo, C. K. (2012). Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimulation, 5(3), 208–213. doi:10.1016/j.brs.2011.04.006.

    Article  PubMed  Google Scholar 

  • Antal, A., Keeser, A., Priori, A., Padberg, F., & Nitsche, M. A. (2015). Conceptual and procedural shortcomings of the systematic review “Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review” by Horvath and co-workers. Brain Stimulation. doi:10.1016/j.brs.2015.1005.1010.

    Google Scholar 

  • Arthur, W., Day, E. A., Villado, A. J., Boatman, P. R., Kowollik, V., Bennett, W., et al. (2010). The effect of distributed practice on immediate posttraining, and long-term performance on a complex command-and-control simulation task. Human Performance, 23(5), 428–445. doi:10.1080/08959285.2010.515277.

    Article  Google Scholar 

  • Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., …, Jonides, J. (2016). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 1–14. doi:10.1162/jocn_a_00979.

  • Barham, M. P., Enticott, P. G., Conduit, R., & Lum, J. A. (2016). Transcranial electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: evidence from a meta-analysis. Neuroscience & Biobehavioral Reviews, 63, 65–77. doi:10.1016/j.neubiorev.2016.01.009.

    Article  Google Scholar 

  • Bastani, A., & Jaberzadeh, S. (2014). Within-session repeated a-tDCS: the effects of repetition rate and inter-stimulus interval on corticospinal excitability and motor performance. Clinical Neurophysiology, 125(9), 1809–1818. doi:10.1016/j.clinph.2014.01.010.

    Article  PubMed  Google Scholar 

  • Ben Achour, S., & Pascual, O. (2010). Glia: the many ways to modulate synaptic plasticity. Neurochemistry International, 57(4), 440–445. doi:10.1016/j.neuint.2010.02.013.

    Article  PubMed  Google Scholar 

  • Born, J., & Wilhelm, I. (2012). System consolidation of memory during sleep. Psychological Research Psychologische Forschung, 76(2), 192–203. doi:10.1007/s00426-011-0335-6.

    Article  PubMed  Google Scholar 

  • Carvalho, S., Boggio, P. S., Goncalves, O. F., Vigario, A. R., Faria, M., Silva, S., …, Leite, J. (2015). Transcranial direct current stimulation based metaplasticity protocols in working memory. Brain Stimulation, 8(2), 289–294. doi:10.1016/j.brs.2014.11.011.

  • Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning: a temporal ridgeline of optimal retention. Psychological Science, 19(11), 1095–1102. doi:10.1111/j.1467-9280.2008.02209.x.

    Article  PubMed  Google Scholar 

  • Chhatbar, P. Y., & Feng, W. (2015). Data synthesis in meta-analysis may conclude differently on cognitive effect from transcranial direct current stimulation. Brain Stimulation. doi:10.1016/j.brs.2015.1006.1001.

    PubMed Central  Google Scholar 

  • Christova, M., Rafolt, D., & Gallasch, E. (2015). Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Behavioural Brain Research, 287, 27–33. doi:10.1016/j.bbr.2015.03.028.

    Article  PubMed  Google Scholar 

  • Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D., Calhoun, V. D. …, Wassermann, E. M. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage, 59(1), 117–128. doi: 10.1016/j.neuroimage.2010.11.036.

  • Dedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M. A. (2016). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters. Brain Stimulation. doi:10.1016/j.brs.2016.04.006.

    PubMed  Google Scholar 

  • Diba, K., & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 10(10), 1241–1242. doi:10.1038/nn1961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donovan, J. J., & Radosevich, D. J. (1999). A meta-analytic review of the distribution of practice effect: now you see it, now you don’t. Journal of Applied Psychology, 84(5), 795–805. doi:10.1037//0021-9010.84.5.795.

    Article  Google Scholar 

  • Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 20–32. doi:10.1016/j.neuron.2015.09.004.

    Article  PubMed  Google Scholar 

  • Ebbinghaus, H. (1885). Memory: a contribution to experimental psychology (translated by Henry A Ruger & Clara E. Bussenius). New York: Teacher’s College, Columbia University.

    Google Scholar 

  • Ehsani, F., Bakhtiary, A. H., Jaberzadeh, S., Talimkhani, A., & Hajihasani, A. (2016). Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: a randomized double-blind sham-controlled study. Neuroscience Research. doi:10.1016/j.neures.2016.06.003.

    PubMed  Google Scholar 

  • Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683. doi:10.1038/nature04587.

    Article  PubMed  Google Scholar 

  • Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., …, Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 23–30. doi:10.1007/s00221-005-2334-6.

  • Frey, U., & Morris, R. G. M. (1997). Synaptic tagging and long-term potentiation. Nature, 385(6616), 533–536. doi:10.1038/385533a0.

    Article  PubMed  Google Scholar 

  • Galvez, V., Alonzo, A., Martin, D., & Loo, C. K. (2013). Transcranial direct current stimulation treatment protocols: should stimulus intensity be constant or incremental over multiple sessions? The International Journal of Neuropsychopharmacology, 16(1), 13–21. doi:10.1017/S1461145712000041.

    Article  PubMed  Google Scholar 

  • Gartside, I. B. (1968). Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature, 220(5165), 383–384.

    Article  PubMed  Google Scholar 

  • Genzel, L., & Robertson, E. M. (2015). To replay, perchance to consolidate. PLoS Biology, 13(10), e1002285. doi:10.1371/journal.pbio.1002285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbs, M. E., Hutchinson, D., & Hertz, L. (2008). Astrocytic involvement in learning and memory consolidation. Neuroscience & Biobehavioral Reviews, 32(5), 927–944. doi:10.1016/j.neubiorev.2008.02.001.

    Article  Google Scholar 

  • Goldsworthy, M. R., Pitcher, J. B., & Ridding, M. C. (2015). Spaced noninvasive brain stimulation: prospects for inducing long-lasting human cortical plasticity. Neurorehabilitation and Neural Repair, 29(8), 714–721. doi:10.1177/1545968314562649.

    Article  PubMed  Google Scholar 

  • Hashemirad, F., Zoghi, M., Fitzgerald, P. B., & Jaberzadeh, S. (2016). The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: a systematic review and meta-analysis. Brain and Cognition, 102, 1–12. doi:10.1016/j.bandc.2015.11.005.

    Article  PubMed  Google Scholar 

  • Hill, A. T., Fitzgerald, P. B., & Hoy, K. E. (2016). Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation, 9(2), 197–208. doi:10.1016/j.brs.2015.10.006.

    Article  PubMed  Google Scholar 

  • Horvath, J. C., Forte, J. D., & Carter, O. (2015a). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia, 66C, 213–236. doi:10.1016/j.neuropsychologia.2014.11.021.

    Article  Google Scholar 

  • Horvath, J. C., Forte, J. D., & Carter, O. (2015b). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550. doi:10.1016/j.brs.2015.01.400.

    Article  PubMed  Google Scholar 

  • Horvath, J. C., Vogrin, S. J., Carter, O., Cook, M. J., & Forte, J. D. (2016). Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions. Experimental Brain Research, 234(9), 2629–2642. doi:10.1007/s00221-016-4667-8.

    Article  PubMed  Google Scholar 

  • Hoy, K. E., Arnold, S. L., Emonson, M. R., Daskalakis, Z. J., & Fitzgerald, P. B. (2014). An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia. Schizophrenia Research, 155(1–3), 96–100. doi:10.1016/j.schres.2014.03.006.

    Article  PubMed  Google Scholar 

  • Hsu, W. Y., Ku, Y., Zanto, T. P., & Gazzaley, A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiology of Aging, 36(8), 2348–2359. doi:10.1016/j.neurobiolaging.2015.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu, W. Y., Zanto, T. P., Anguera, J. A., Lin, Y. Y., & Gazzaley, A. (2015). Delayed enhancement of multitasking performance: effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex, 69, 175–185. doi:10.1016/j.cortex.2015.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Javadi, A. H., & Cheng, P. (2013). Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory. Brain Stimulation, 6(4), 668–674. doi:10.1016/j.brs.2012.10.007.

    Article  PubMed  Google Scholar 

  • Jones, K. T., Stephens, J. A., Alam, M., Bikson, M., & Berryhill, M. E. (2015). Longitudinal neurostimulation in older adults improves working memory. PLoS One, 10(4), e0121904. doi:10.1371/journal.pone.0121904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlsson, M. P., & Frank, L. M. (2009). Awake replay of remote experiences in the hippocampus. Nature Neuroscience, 12(7), 913–U132. doi:10.1038/nn.2344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz, B., Au, J., Buschkuehl, M., Abagis, T., Zabel, C., Jaeggi, S. M., & Jonides, J. (in press). Individual differences and long-term consequences of tDCS-augmented cognitive training. Journal of Cognitive Neuroscience.

  • Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., …, Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. Journal of Neuroscience, 31(43), 15284–15293. doi: 10.1523/JNEUROSCI.0542-11.2011.

  • Koyama, S., Tanaka, S., Tanabe, S., & Sadato, N. (2015). Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement. Neuroscience Letters, 588, 49–53. doi:10.1016/j.neulet.2014.11.043.

    Article  PubMed  Google Scholar 

  • Krause, B., Marquez-Ruiz, J., & Cohen Kadosh, R. (2013). The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Frontiers in Human Neuroscience, 7, 602. doi:10.3389/fnhum.2013.00602.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindenberg, R., Nachtigall, L., Meinzer, M., Sieg, M. M., & Floel, A. (2013). Differential effects of dual and unihemispheric motor cortex stimulation in older adults. Journal of Neuroscience, 33(21), 9176–9183. doi:10.1523/JNEUROSCI.0055-13.2013.

    Article  PubMed  Google Scholar 

  • Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. (2016). Does transcranial direct current stimulation improve healthy working memory?: a meta-analytic review. Journal of Cognitive Neuroscience, 28, 1063–1089. doi:10.1162/jocn_a_00956.

    Article  PubMed  Google Scholar 

  • Martin, D. M., Liu, R., Alonzo, A., Green, M., Player, M. J., Sachdev, P., et al. (2013). Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. The International Journal of Neuropsychopharmacology, 16(9), 1927–1936. doi:10.1017/S1461145713000539.

    Article  PubMed  Google Scholar 

  • Martin, D. M., Liu, R., Alonzo, A., Green, M., & Loo, C. K. (2014). Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Experimental Brain Research, 232(10), 3345–3351. doi:10.1007/s00221-014-4022-x.

    Article  PubMed  Google Scholar 

  • Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Floel, A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. Journal of Neuroscience, 33(30), 12470–12478. doi:10.1523/JNEUROSCI.5743-12.2013.

    Article  PubMed  Google Scholar 

  • Monai, H., Ohkura, M., Tanaka, M., Oe, Y., Konno, A., Hirai, H., …, Hirase, H. (2016). Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Communications, 7. doi: 10.1038/ncomms11100.

  • Monte-Silva, K., Kuo, M. F., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2010). Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). Journal of Neurophysiology, 103(4), 1735–1740. doi:10.1152/jn.00924.2009.

    Article  PubMed  Google Scholar 

  • Monte-Silva, K., Kuo, M. F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., et al. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6(3), 424–432. doi:10.1016/j.brs.2012.04.011.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., …, Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553(Pt 1), 293–301. doi: 10.1113/jphysiol.2003.049916.

  • Penolazzi, B., Pastore, M., & Mondini, S. (2013). Electrode montage dependent effects of transcranial direct current stimulation on semantic fluency. Behavioural Brain Research, 248, 129–135. doi:10.1016/j.bbr.2013.04.007.

    Article  PubMed  Google Scholar 

  • Perceval, G., Floel, A., & Meinzer, M. (2016). Can transcranial direct current stimulation counteract age-associated functional impairment? Neuroscience & Biobehavioral Reviews, 65, 157–172. doi:10.1016/j.neubiorev.2016.03.028.

    Article  Google Scholar 

  • Podda, M. V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S. A., …, Grassi, C. (2016). Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Scientific Reports, 6. doi: 10.1038/srep22180.

  • Polania, R., Nitsche, M. A., & Paulus, W. (2011). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Human Brain Mapping, 32(8), 1236–1249. doi:10.1002/hbm.21104.

    Article  PubMed  Google Scholar 

  • Price, A. R., & Hamilton, R. H. (2015). A re-evaluation of the cognitive effects from single-session transcranial direct current stimulation. Brain Stimulation, 8(3), 663–665. doi:10.1016/j.brs.2015.03.007.

    Article  PubMed  Google Scholar 

  • Prichard, G., Weiller, C., Fritsch, B., & Reis, J. (2014). Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning. Brain Stimulation, 7(4), 532–540. doi:10.1016/j.brs.2014.04.005.

    Article  PubMed  Google Scholar 

  • Purpura, D. P., & McMurtry, J. G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28, 166–185.

    PubMed  Google Scholar 

  • Ranieri, F., Podda, M. V., Riccardi, E., Frisullo, G., Dileone, M., Profice, P., …, Grassi, C. (2012). Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. Journal of Neurophysiology, 107(7), 1868–1880. doi:10.1152/jn.00319.2011.

  • Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., …, Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. doi: 10.1073/pnas.0805413106.

  • Reis, J., Fischer, J. T., Prichard, G., Weiller, C., Cohen, L. G., & Fritsch, B. (2015). Time- but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cerebral Cortex, 25(1), 109–117. doi:10.1093/cercor/bht208.

    Article  PubMed  Google Scholar 

  • Rohan, J. G., Carhuatanta, K. A., McInturf, S. M., Miklasevich, M. K., & Jankord, R. (2015). Modulating hippocampal plasticity with in vivo brain stimulation. Journal of Neuroscience, 35(37), 12824–12832. doi:10.1523/Jneurosci.2376-15.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruohonen, J., & Karhu, J. (2012). tDCS possibly stimulates glial cells. Clinical Neurophysiology, 123(10), 2006–2009. doi:10.1016/j.clinph.2012.02.082.

    Article  PubMed  Google Scholar 

  • Sandrini, M., Brambilla, M., Manenti, R., Rosini, S., Cohen, L. G., & Cotelli, M. (2014). Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 6, 1–9. doi:10.3389/fnagi.2014.00289.

    Article  Google Scholar 

  • Sirota, A., & Buzsaki, G. (2005). Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus & Related Systems, 3(4), 245–259. doi:10.1017/S1472928807000258.

    Article  Google Scholar 

  • Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53. doi:10.1177/1073858410386614.

    Article  PubMed  Google Scholar 

  • Stephens, J. A., & Berryhill, M. E. (2016). Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimulation. doi:10.1016/j.brs.2016.04.001.

    PubMed  Google Scholar 

  • Steward, O., Wallace, C. S., Lyford, G. L., & Worley, P. F. (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron, 21(4), 741–751.

    Article  PubMed  Google Scholar 

  • Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., et al. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. Journal of Neurophysiology, 104(2), 1134–1140. doi:10.1152/jn.00661.2009.

    Article  PubMed  Google Scholar 

  • Underwood, E. (2016). NEUROSCIENCE. Cadaver study challenges brain stimulation methods. Science, 352(6284), 397. doi:10.1126/science.352.6284.397.

    Article  PubMed  Google Scholar 

  • Utz, K. S., Dimova, V., Oppenlander, K., & Kerkhoff, G. (2010). Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology-a review of current data and future implications. Neuropsychologia, 48(10), 2789–2810. doi:10.1016/j.neuropsychologia.2010.06.002.

    Article  PubMed  Google Scholar 

  • Wang, Z., Zhou, R., & Shah, P. (2014). Spaced cognitive training promotes training transfer. Frontiers in Human Neuroscience, 8, 217. doi:10.3389/fnhum.2014.00217.

    PubMed  PubMed Central  Google Scholar 

  • Wilson, M. A., & Mcnaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676–679. doi:10.1126/science.8036517.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacky Au.

Ethics declarations

Funding

This work was supported by the National Science Foundation Graduate Research Fellowship Grant No. DGE-1321846 to J.A. J.A. and M.B. are employed at the MIND Research Institute, whose interest is related to this work and S.M.J. has an indirect financial interest in MIND Research Institute. No other conflicts of interests or sources of funding are declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Au, J., Karsten, C., Buschkuehl, M. et al. Optimizing Transcranial Direct Current Stimulation Protocols to Promote Long-Term Learning. J Cogn Enhanc 1, 65–72 (2017). https://doi.org/10.1007/s41465-017-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-017-0007-6

Keywords

Navigation