Skip to main content

Cognitive Plasticity and Transcranial Electrical Stimulation

  • Chapter
  • First Online:
Cognitive Training

Abstract

This chapter provides an introduction to transcranial electrical stimulation (tES), a non-invasive method for modulating activity in the underlying cortex by delivering a weak electrical current through electrodes placed on the scalp. Starting with an introduction to different types of stimulation, we go on to discuss our current understanding of the neurophysiological mechanisms of tES before reviewing its utility as a tool to enhance cognitive function during and after cognitive training. While there is some evidence that tES can be used in conjunction with cognitive training to improve both training gains and transfer to untrained cognitive tasks, the results are mixed and inconclusive with as many studies reporting null effects as those that report positive effects. We discuss possible reasons for these inconsistent results and conclude that to fully understand the potential benefits of tES for enhancing cognitive plasticity we must: (i) develop a better understanding of how the cellular mechanisms of tES contribute to changes at the level of the cortex and (ii) consider optimising tES protocols at the level of the individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrus, G. G., Paulus, W., & Antal, A. (2010). Cutaneous perception thresholds of electrical stimulation methods: Comparison of tDCS and tRNS. Clinical Neurophysiology, 121, 1908–1914.

    Article  Google Scholar 

  • Antal, A., & Paulus, W. (2013). Transcranial alternating current stimulation (tACS). Frontiers in Human Neuroscience, 7, 1–4.

    Article  Google Scholar 

  • Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. The European Journal of Neuroscience, 26, 2687–2691.

    Article  Google Scholar 

  • Antal, A., Boros, K., Poreisz, C., Chaieb, L., Terney, D., & Paulus, W. (2008). Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation, 1, 97–105.

    Google Scholar 

  • Antonenko, D., Faxel, M., Grittner, U., Lavidor, M., & Flöel, A. (2016). Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. Neural Plasticity, 2016, 1–13.

    Article  Google Scholar 

  • Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C.,... & Jonides, J. (2016). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419–1432.

    Google Scholar 

  • Bestmann, S., de Berker, A. O., & Bonaiuto, J. (2015). Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 19, 13–20.

    Article  Google Scholar 

  • Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. Journal of Physiology, 557, 175–190.

    Google Scholar 

  • Bikson, M., Rahman, A., & Datta, A. (2012). Computational models of transcranial direct current stimulation. Clinical EEG and Neuroscience, 43, 176–183.

    Article  Google Scholar 

  • Bindman, L. J., Lippold, O. C. J., & Redfearn, J. W. T. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. Journal of Physiology, 172, 369–382.

    Google Scholar 

  • Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation in the rat. Journal of Physiology, 591, 4027–4042.

    Google Scholar 

  • Brem, A. K., Almquist, J. N. F., Mansfield, K., Plessow, F., Sella, F., Santarnecchi, E.,... & Yeung, N. (2018). Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia, 118, 107–114.

    Article  Google Scholar 

  • Brunoni, A. R., & Vanderhasselt, M.-A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain and Cognition, 86, 1–9.

    Article  Google Scholar 

  • Brunoni, A. R., Moffa, A. H., Sampaio-Junior, B., Borrione, L., Moreno, M. L., Fernandes, R. A.,... & Chamorro, R. (2017). Trial of electrical direct-current therapy versus escitalopram for depression. New England Journal of Medicine, 376, 2523–2533.

    Google Scholar 

  • Byrne, E. M., Ewbank, M. P., Gathercole, S. E., Holmes, J. (in press). The effects of transcranial direct current stimulation on within- and cross-paradigm transfer following multi-session backward recall training. Brain and Cognition. https://doi.org/10.1016/j.bandc.2020.105552.

  • Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R.,... & Walsh, V. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. Journal of Neuroscience, 33, 14899–14907.

    Google Scholar 

  • Cappelletti, M., Pikkat, H., Upstill, E., Speekenbrink, M., & Walsh, V. (2015). Learning to integrate versus inhibiting information is modulated by age. Journal of Neuroscience, 35, 2213–2225.

    Google Scholar 

  • Chaieb, L., Kovacs, G., Cziraki, C., Greenlee, M., Paulus, W., & Antal, A. (2009). Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex. Experimental Brain Research, 198, 439–444.

    Google Scholar 

  • Chaieb, L., Antal, A., & Paulus, W. (2011). Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability. Restorative Neurology and Neuroscience, 29, 167–175.

    Article  Google Scholar 

  • Cotelli, M., Manenti, R., Petesi, M., Brambilla, M., Cosseddu, M., Zanetti, O.,... & Borroni, B. (2014a). Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training. Journal of Alzheimer’s Disease, 39, 799–808.

    Article  Google Scholar 

  • Cotelli, M., Manenti, R., Brambilla, M., Petesi, M., Rosini, S., Ferrari, C.,... & Miniussi, C. (2014b). Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Frontiers in Aging Neuroscience, 6, 38.

    Article  Google Scholar 

  • Creutzfeldt, O. D., Fromm, G. H., & Kapp, H. (1962). Influence of transcortical d-c currents on cortical neuronal activity. Experimental Neurology, 5, 436–452.

    Article  Google Scholar 

  • DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments. https://doi.org/10.3791/2744.

  • de Berker, A. O., Bikson, M., & Bestmann, S. (2013). Predicting the behavioral impact of transcranial direct current stimulation: Issues and limitations. Frontiers in Human Neuroscience, 7, 613.

    Article  Google Scholar 

  • Ditye, T., Jacobson, L., Walsh, V., & Lavidor, M. (2012). Modulating behavioral inhibition by tDCS combined with cognitive training. Experimental Brain Research, 219, 363–368.

    Article  Google Scholar 

  • Dockery, C. A., Hueckel-Weng, R., Birbaumer, N., & Plewnia, C. (2009). Enhancement of planning ability by transcranial direct current stimulation. Journal of Neuroscience, 29, 7271–7277.

    Google Scholar 

  • Elmasry, J., Loo, C., & Martin, D. M. (2015). A systematic review of transcranial electrical stimulation combined with cognitive training. Restorative Neurology and Neuroscience, 33, 263–278.

    Article  Google Scholar 

  • Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66, 198–204.

    Google Scholar 

  • Fröhlich, F., & McCormick, D. A. (2010). Endogenous electric fields may guide neocortical network activity. Neuron, 67, 129–143.

    Article  Google Scholar 

  • Gartside, I. B. (1968). Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: Role of protein synthesis (24). Nature, 220, 383–384.

    Article  Google Scholar 

  • Hämmerer, D., Bonaiuto, J., Klein-Flügge, M., Bikson, M., & Bestmann, S. (2016). Selective alteration of human value decisions with medial frontal tDCS is predicted by changes in attractor dynamics. Scientific Reports, 6, 25160.

    Article  Google Scholar 

  • Hattori, Y., Moriwaki, A., & Hori, Y. (1990). Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neuroscience Letters, 116, 320–324.

    Article  Google Scholar 

  • Helfrich, R. F., Schneider, T. R., Rach, S., Trautmann-Lengsfeld, S. A., Engel, A. K., & Herrmann, C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology, 24, 333–339.

    Google Scholar 

  • Holmes, J., Byrne, E. M., Gathercole, S. E., & Ewbank, M. P. (2016). Transcranial random noise stimulation does not enhance the effects of working memory training. Journal of Cognitive Neuroscience, 28, 1–13.

    Article  Google Scholar 

  • Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8, 535–550.

    Article  Google Scholar 

  • Hoy, K. E., Bailey, N., Arnold, S., Windsor, K., John, J., Daskalakis, Z. J., & Fitzgerald, P. B. (2015). The effect of γ-tACS on working memory performance in healthy controls. Brain and Cognition, 101, 51–56.

    Article  Google Scholar 

  • Islam, N., Aftabuddin, M., Moriwaki, A., Hattori, Y., & Hori, Y. (1995). Increase in the calcium level following anodal polarization in the rat brain. Brain Research, 684, 206–208.

    Google Scholar 

  • Jones, K. T., Stephens, J. A., Alam, M., Bikson, M., & Berryhill, M. E. (2015). Longitudinal neurostimulation in older adults improves working memory. PLoS One, 10, e0121904.

    Google Scholar 

  • Kabakov, A. Y., Muller, P. A., Pascual-Leone, A., Jensen, F. E., & Rotenberg, A. (2012). Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. Journal of Neurophysiology, 107, 1881–1889.

    Google Scholar 

  • Krause, B., & Cohen Kadosh, R. (2014). Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience, 8, 25.

    Article  Google Scholar 

  • Kuo, M.-F., & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience, 43, 192–199.

    Article  Google Scholar 

  • Lally, N., Nord, C.L., Walsh, V., Roiser, J.P. (2013). Does excitatory fronto-extracephalic tDCS lead to improved working memory performance? F1000Research. https://doi.org/10.12688/f1000research.2-219.v1.

  • Looi, C. Y., Lim, J., Sella, F., Lolliot, S., Duta, M., Avramenko, A. A., & Kadosh, R. C. (2017). Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Scientific Reports, 7, 1–10.

    Google Scholar 

  • López-Alonso, V., Cheeran, B., Río-Rodríguez, D., & Fernández-del-Olmo, M. (2014). Inter-individual variability in response to Non-invasive brain stimulation paradigms. Brain Stimulation, 7, 372–380.

    Article  Google Scholar 

  • Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. (2016). Does transcranial direct current stimulation improve healthy working memory?: A meta-analytic review. Journal of Cognitive Neuroscience, 28, 1063–1089.

    Article  Google Scholar 

  • Manenti, R., Cotelli, M. S., Cobelli, C., Gobbi, E., Brambilla, M., Rusich, D.,... & Cotelli, M. (2018). Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson disease: A randomized, placebo-controlled study. Brain Stimulation, 11, 1251–1262.

    Google Scholar 

  • Martin, D. M., Liu, R., Alonzo, A., Green, M., & Loo, C. K. (2014). Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: Effect of timing of stimulation. Experimental Brain Research, 232, 3345–3351.

    Google Scholar 

  • Meinzer, M., Jähnigen, S., Copland, D. A., Darkow, R., Grittner, U., Avirame, K.,... & Flöel, A. (2014). Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex, 50, 137–147.

    Article  Google Scholar 

  • Meinzer, M., Darkow, R., Lindenberg, R., & Flöel, A. (2016). Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain, 139, 1152–1163.

    Article  Google Scholar 

  • Meiron, O., & Lavidor, M. (2014). Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clinical Neurophysiology, 125, 77–82.

    Article  Google Scholar 

  • Moliadze, V., Antal, A., & Paulus, W. (2010). Boosting brain excitability by transcranial high frequency stimulation in the ripple range. Journal of Physiology, 588, 4891–4904.

    Google Scholar 

  • Moliadze, V., Atalay, D., Antal, A., & Paulus, W. (2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulation, 5, 505–511.

    Article  Google Scholar 

  • Moreno-Duarte, I., Gebodh, N., Schestatsky, P., Guleyupoglu, B., Reato, D., Bikson, M., & Fregni, F. (2014). Transcranial electrical stimulation: Transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial pulsed current stimulation (tPCS), and transcranial random noise stimulation (tRNS). In R. C. Kadosh (Ed.), The stimulated brain: Cognitive enhancement using non-invasive brain stimulation (pp. 35–59). London, UK: Academic Press.

    Chapter  Google Scholar 

  • Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18, 46–60.

    Article  Google Scholar 

  • Nieratschker, V., Kiefer, C., Giel, K., Krüger, R., & Plewnia, C. (2015). The COMT Val/met polymorphism modulates effects of tDCS on response inhibition. Brain Stimulation, 8, 283–288.

    Google Scholar 

  • Nilsson, J., Lebedev, A. V., Rydström, A., & Lövdén, M. (2017). Direct-current stimulation does little to improve the outcome of working memory training in older adults. Psychological Science, 28, 907–920.

    Article  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527, 633–639.

    Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899–1901.

    Article  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation - update 2011. Restorative Neurology and Neuroscience, 29, 463–492.

    Article  Google Scholar 

  • Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 114, 600–604.

    Google Scholar 

  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A.,... & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1, 206–223.

    Google Scholar 

  • Nord, C. L., Lally, N., & Charpentier, C. J. (2013). Harnessing electric potential: DLPFC tDCS induces widespread brain perfusion changes. Frontiers in Systems Neuroscience, 7, 99.

    Article  Google Scholar 

  • Nord, C. L., Halahakoon, D. C., Limbachya, T., Charpentier, C., Lally, N., Walsh, V.,... & Roiser, J. P. (2019). Neural predictors of treatment response to brain stimulation and psychological therapy in depression: a double-blind randomized controlled trial. Neuropsychopharmacology, 44, 1613–1622.

    Google Scholar 

  • O’Shea, J., Boudrias, M. H., Stagg, C. J., Bachtiar, V., Kischka, U., Blicher, J. U., & Johansen-Berg, H. (2014). Predicting behavioural response to TDCS in chronic motor stroke. NeuroImage, 85, 924–933.

    Article  Google Scholar 

  • Pahor, A., & Jaušovec, N. (2014). The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence. International Journal of Psychophysiology, 93, 322–331.

    Article  Google Scholar 

  • Park, S. H., Seo, J. H., Kim, Y. H., & Ko, M. H. (2014). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport, 25, 122–126.

    Article  Google Scholar 

  • Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: A primer. Neuron, 87, 932–945.

    Article  Google Scholar 

  • Parkin, B. L., Bhandari, M., Glen, J. C., & Walsh, V. (2019). The physiological effects of transcranial electrical stimulation do not apply to parameters commonly used in studies of cognitive neuromodulation. Neuropsychologia, 128, 332–339.

    Article  Google Scholar 

  • Pascual-Leone, A., Valls-Solé, J., Wassermann, E. M., & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117, 847–858.

    Google Scholar 

  • Paulus, W. (2011). Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21, 602–617.

    Article  Google Scholar 

  • Paulus, W., Antal, A., & Nitsche, M. A. (2013). Physiological basis and methodological aspects of transcranial electric stimulation (tDCS, tACS, and tRNS). In C. Miniussi, W. Paulus, & P. M. Rossini (Eds.), Transcranial brain stimulation (pp. 93–111). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Popescu, T., Krause, B., Terhune, D. B., Twose, O., Page, T., Humphreys, G., & Kadosh, R. C. (2016). Transcranial random noise stimulation mitigates increased difficulty in an arithmetic learning task. Neuropsychologia, 81, 255–264.

    Article  Google Scholar 

  • Price, A. R., & Hamilton, R. H. (2015). A re-evaluation of the cognitive effects from single-session transcranial direct current stimulation. Brain Stimulation, 8, 2014–2016.

    Article  Google Scholar 

  • Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. Journal of Physiology, 591, 2563–2578.

    Google Scholar 

  • Richmond, L. L., Wolk, D., Chein, J. M., & Olson, I. R. (2014). Transcranial direct current stimulation enhances verbal working memory training performance over time and near-transfer outcomes. Journal of Cognitive Neuroscience, 26, 2443–2454.

    Article  Google Scholar 

  • Romanska, A., Rezlescu, C., Susilo, T., Duchaine, B., & Banissy, M. J. (2015). High-frequency transcranial random noise stimulation enhances perception of facial identity. Cerebral Cortex, 25, 4334–4340.

    Google Scholar 

  • Ruf, S. P., Fallgatter, A. J., & Plewnia, C. (2017). Augmentation of working memory training by transcranial direct current stimulation (tDCS). Scientific Reports, 7, 876.

    Article  Google Scholar 

  • Segrave, R. A., Arnold, S., Hoy, K., & Fitzgerald, P. B. (2014). Concurrent cognitive control training augments the antidepressant efficacy of tDCS: A pilot study. Brain Stimulation, 7, 325–331.

    Article  Google Scholar 

  • Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. (2016). Do “brain-training” programs work?. Psychological Science in the Public Interest, 17, 103–186.

    Google Scholar 

  • Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L.,... & Kadosh, R. C. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23, 987–992.

    Google Scholar 

  • Stagg, C. J., Bachtiar, V., & Johansen-Berg, H. (2011). The role of GABA in human motor learning. Current Biology, 21, 480–484.

    Article  Google Scholar 

  • Stagg, C. J., Lin, R. L., Mezue, M., Segerdahl, A., Kong, Y., Xie, J., & Tracey, I. (2013). Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. Journal of Neuroscience, 33, 11425–11431.

    Google Scholar 

  • Summers, J. J., Kang, N., & Cauraugh, J. H. (2015). Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta-analysis. Ageing Research Reviews, 25, 42–54.

    Article  Google Scholar 

  • Talsma, L. J., Kroese, H. A., & Slagter, H. A. (2017). Boosting cognition: Effects of multiple-session transcranial direct current stimulation on working memory. Journal of Cognitive Neuroscience, 29, 755–769.

    Article  Google Scholar 

  • Tavakoli, A. V., & Yun, K. (2017). Transcranial alternating current stimulation (tACS) mechanisms and protocols. Frontiers in Cellular Neuroscience, 11, 1–10.

    Article  Google Scholar 

  • Terney, D., Chaieb, L., Moliadze, V., Antal, A., & Paulus, W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. Journal of Neuroscience, 28, 14147–14155.

    Google Scholar 

  • Tremblay, S., Lepage, J. F., Latulipe-Loiselle, A., Fregni, F., Pascual-Leone, A., & Théoret, H. (2014). The uncertain outcome of prefrontal tDCS. Brain Stimulation, 7, 773–783.

    Article  Google Scholar 

  • Wach, C., Krause, V., Moliadze, V., Paulus, W., Schnitzler, A., & Pollok, B. (2013). Effects of 10Hz and 20Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behavioural Brain Research, 241, 1–6.

    Article  Google Scholar 

  • Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P.,... & Knotkova, H. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127, 1031–1048.

    Google Scholar 

  • Xu, Y., Qiu, Z., Zhu, J., Liu, J., Wu, J., Tao, J., & Chen, L. (2019). The modulation effect of non-invasive brain stimulation on cognitive function in patients with mild cognitive impairment: A systematic review and meta-analysis of randomized controlled trials 11 medical and health sciences 1103 clinical sciences 11 Medica. BMC Neuroscience, 20, 2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Byrne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Byrne, E.M., Nord, C.L., Holmes, J. (2021). Cognitive Plasticity and Transcranial Electrical Stimulation. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. https://doi.org/10.1007/978-3-030-39292-5_7

Download citation

Publish with us

Policies and ethics