Skip to main content
Log in

Recent Discoveries in the Reproductive Control of Aging

  • Reproductive and Developmental Genetics (Z Urban and B Pober, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Reproduction is an energetically expensive endeavor that has profound influences on many life history traits, including the length of life. Reduced reproduction is associated with increased longevity in many organisms. Similarly, mating has been reported to shorten the lifespan of females in multiple species. Contemporary studies in model organisms have begun to unravel the molecular complexities that govern the relationship between reproduction and longevity. Here, we discuss recent discoveries that examine the genetic mechanisms by which two contrasting reproductive events—germline loss and successful mating—impact the lifespan of Caenorhabditis elegans. We first describe genes necessary for the longevity associated with germline removal in C. elegans, with particular emphasis on microRNAs (miRNAs) that play essential roles in this paradigm. Next, we discuss current efforts toward molecular characterization of procreative interactions between different sexes that affect lifespan. Together, these studies illustrate how the same genetic pathways may be utilized by different sexes to exert behavioral and physiological changes in response to various reproductive events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Archie EA, Altmann J, Alberts SC. Costs of reproduction in a long-lived female primate: injury risk and wound healing. Behav Ecol Sociobiol. 2014;68(7):1183–93.

    Article  PubMed  Google Scholar 

  2. Drewry MD, Williams JM, Hatle JD. Life-extending dietary restriction and ovariectomy result in similar feeding rates but different physiologic responses in grasshoppers. Exp Gerontol. 2011;46(10):781–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Drori D, Folman Y. Environmental effects on longevity in the male rat: exercise, mating, castration and restricted feeding. Exp Gerontol. 1976;11:25–32.

    Article  CAS  PubMed  Google Scholar 

  4. Flatt T, Kyung-Jin M, D’Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R, Jones DL, Tatar M. Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci USA. 2008;105(17):6368–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hoffman JM, Creevy KE, Promislow DEL. Reproductive capability is associated with lifespan and cause of death in companion dogs. PLoS One. 2013. doi:10.1371/journal.pone.0061082.

    Google Scholar 

  6. Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature. 1999;399(6734):362–6.

    Article  CAS  PubMed  Google Scholar 

  7. Min KJ, Lee CK, Park HN. The lifespan of Korean eunuchs. Curr Biol. 2012;22(18):R792–3.

    Article  CAS  PubMed  Google Scholar 

  8. Sinha A, Rae R. A functional genomic screen for evolutionarily conserved genes required for lifespan and immunity in germline-deficient C. elegans. PLoS One. 2014;9(8):e101970. doi:10.1371/journal.pone.0101970.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Tabatabaie V, Atzmon G, Rajpathak SN, Freeman R, Barzilai N, Crandall J. Exceptional longevity is associated with decreased reproduction. Aging (Albany NY). 2011;3(12):1202–5.

    PubMed Central  PubMed  Google Scholar 

  10. Kirkwood TB. Evolution of ageing. Nature. 1977;270(5635):301–4.

    Article  CAS  PubMed  Google Scholar 

  11. Le Cunff Y, Baudisch A, Pakdaman K. Evolution of aging: individual life history trade-offs and population heterogeneity account for mortality patterns across species. J Evol Biol. 2014;27(8):1706–20.

    Article  PubMed  Google Scholar 

  12. Abramson BL, Melvin RG. Cardiovascular risk in women: focus on hypertension. Can J Cardiol. 2014;30(5):553–9.

    Article  PubMed  Google Scholar 

  13. Colaianni G, Brunetti G, Faienza MF, Colucci S, Grano M. Osteoporosis and obesity: role of Wnt pathway in human and murine models. World J Orthop. 2014;5(3):242–6.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Mason JB, Cargill SL, Griffey SM, Reader JR, Anderson GB, Carey JR. Transplantation of young ovaries restored cardioprotective influence in postreproductive-aged mice. Aging Cell. 2011;10(3):448–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: long-term health consequences. Maturitas. 2010;65(2):161–6.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Antebi A. Regulation of longevity by the reproductive system. Exp Gerontol. 2013;48(7):596–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. •• Ghazi A. Transcriptional networks that mediate signals from reproductive tissues to influence lifespan. Genesis. 2013; 51(1):1–15. This is an exhaustive review of current knowledge on the key transcription factors and their associated mechanistic pathways necessary for the long life of GSC-less C. elegans mutants.

  18. Hansen M, Flatt T, Aguilaniu H. Reproduction, fat metabolism, and life span: what is the connection? Cell Metab. 2013;17(1):10–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kashyap L, Perera S, Fisher AL. Identification of novel genes involved in sarcopenia through RNAi screening in Caenorhabditis elegans. J Gerontol A. 2012;67(1):56–65.

    Article  Google Scholar 

  20. Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000;10(5):703–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Reiter LT, Bier E. Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin Ther Targets. 2002;6(3):387–99.

    Article  CAS  PubMed  Google Scholar 

  22. Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science. 2002;295(5554):502–5.

    Article  CAS  PubMed  Google Scholar 

  23. Libina N, Berman JR, Kenyon C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell. 2003;115(4):498–502.

    Article  Google Scholar 

  24. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  25. Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 2000;14(12):1512–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell. 2006;124(5):1055–68.

    Article  CAS  PubMed  Google Scholar 

  27. Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell. 2006;124(6):1209–23.

    Article  CAS  PubMed  Google Scholar 

  28. Thondamal M, Witting M, Schmitt-Kopplin P, Aguilaniu H. Steroid hormone signaling links reproduction to lifespan in dietary-restricted Caenorhabditis elegans. Nat Commun. 2014;5:4879.

    Article  PubMed  Google Scholar 

  29. Jia K, Albert PS, Riddle DL. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development. 2002;129(1):221–31.

    CAS  PubMed  Google Scholar 

  30. Ghazi A, Henis-Korenblit S, Kenyon C. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans. PLoS Genet. 2009;5(9):e1000639. doi:10.1371/journal.pgen.1000639.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H. Fatty acid desaturation links germ cell loss to longevity through NHR-80/NHF4 in C. elegans. PLoS Biol. 2011;9(3):e1000599. doi:10.1371/journal.pbio.1000599.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lapierre LR, Gelino S, Meléndez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol. 2011;21(18):1507–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun. 2013;4:2267.

    PubMed  Google Scholar 

  34. Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300(5622):1142–5.

    Article  CAS  PubMed  Google Scholar 

  35. Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, Manning G, Dillin A. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature. 2012;489(7415):263–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell. 2006;124(5):1039–53.

    Article  CAS  PubMed  Google Scholar 

  37. McCormick M, Chen K, Ramaswamy P, Kenyon C. New genes that extend Caenorhabditis elegans’ lifespan in response to reproductive signals. Aging Cell. 2012;11(2):192–202.

    Article  CAS  PubMed  Google Scholar 

  38. Rae R, Sinha A, Sommer RJ. Genome-wide analysis of germline signaling genes regulating longevity and innate immunity in the nematode Pristionchus pacificus. PLoS Pathog. 2012;8(8):e1002864. doi:10.1371/journal.ppat.1002864.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Brock TJ, Browse J, Watts JL. Genetic regulation of unsaturated fatty acid composition in C. elegans. PLoS Genet. 2006;2(7):e108.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A. Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell. 2006;10(4):473–82.

    Article  CAS  PubMed  Google Scholar 

  41. Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A. A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci USA. 2007;104(12):5014–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2014. doi:10.1038/cdd.2014.112.

    PubMed  Google Scholar 

  43. Smith-Vikos T, Slack FJ. MicroRNAs and their roles in aging. J Cell Sci. 2012;125(1):7–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  45. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.

    Article  CAS  PubMed  Google Scholar 

  46. Boehm M, Slack F. A developmental timing MicroRNA and its target regulate life span in C. elegans. Science. 2005;310(5756):1954–7.

    Article  CAS  PubMed  Google Scholar 

  47. Lucanic M, Graham J, Scott G, Bhaumik D, Benz CC, Hubbard A, Lithgow GJ, Melov S. Age-related micro-RNA abundance in individual C. elegans. Aging (Albany NY). 2013;5(6):394–411.

    CAS  Google Scholar 

  48. •• Boulias K, Horvitz HR. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 2012;15(4):439–450. This study offers the first evidence for activity of a single miRNA being required for lifespan extension in GSC mutants. The dialogue between three distinct tissue types in C. elegans that collectively impact lifespan is demonstrated.

  49. •• Shen Y, Wollam J, Magner D, Karalay O, Antebi A. A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science. 2012;338(6113):1472–1476. A connection between major life history events, namely developmental decisions and gonad-influenced longevity, are shown to be determined by the activity of particular miRNAs. The cognate targets of these miRNAs are identified as well.

  50. Smith-Vikos T, de Lencastre A, Inukai S, Schlomchik M, Holtrup B, Slack FJ. MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol. 2014. doi:10.1016/j.cub.2014.08.013.

    PubMed  Google Scholar 

  51. Hammell CM, Karp X, Ambros V. A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2009;106(44):18668–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Gems D, Riddle DL. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature. 1996;379(6567):723–5.

    Article  CAS  PubMed  Google Scholar 

  53. Gems D, Riddle DL. Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics. 2000;154(4):1597–610.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. •• Maures TJ, Booth LN, Benayoun BA, Izrayelit Y, Schroeder FC, Brunet A. Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science. 2014;343(6170):541–544. This study shows that direct physical interaction (copulation) between male and hermaphrodite C. elegans is not required for the detrimental healthspan and longevity phenotypes associated with mixed sex populations. The suggestion of secreted compounds impacting longevity is elegantly demonstrated by use of mutant animals separately deficient for secreted compound biosynthesis and chemosensation.

  55. •• Shi C, Murphy CT. Mating induces shrinking and death in Caenorhabditis mothers. Science. 2014;343(6170):536–540. This study is the first to quantify and characterize in detail the deleterious morphological phenotypes associated with mating events in C. elegans and to demonstrate evolutionary conservation of this effect in other Caenorhabditis species. Genes involved in these physiological changes are identified.

  56. Woodruff GC, Knauss CM, Maugel TK, Haag ES. Mating damages the cuticle of C. elegans hermaphrodites. PLoS One. 2014;9(8):e104456. doi:10.1371/journal.pone.0104456.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Hughes SE, Evason K, Xiong C, Kornfeld K. Genetic and pharmacological factors that influence reproductive aging in nematodes. PLoS Genet. 2007. doi:10.1371/journal.pgen.0030025.

    Google Scholar 

  58. Pickett CL, Kornfeld K. Age-related degeneration of the egg-laying system promotes matricidal hatching in Caenorhabditis elegans. Aging Cell. 2013;12(4):544–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Parsch J, Ellegren H. The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet. 2013;14(2):83–7.

    Article  CAS  PubMed  Google Scholar 

  60. Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995;373(6511):241–4.

    Article  CAS  PubMed  Google Scholar 

  61. Zajitschek F, Zajistchek SR, Friberg U, Maklakov AA. Interactive effects of sex, social environment, dietary restriction, and methionine on survival and reproduction in fruit flies. Age (Dordr). 2013;35(4):1193–204.

    Article  CAS  Google Scholar 

  62. Dowling DK, Williams BR, Garcia-Gonzalez F. Maternal sexual interactions affect offspring survival and ageing. J Evol Biol. 2013. doi:10.1111/jeb.12276.

    PubMed  Google Scholar 

  63. Gerrard DT, Fricke C, Edward DA, Edwards DR, Chapman T. Genome-wide responses of female fruit flies subjected to divergent mating regimes. PLoS One. 2013;8(6):e68136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wilder SM, Le Couteur DG, Simpson SJ. Diet mediates the relationship between longevity and reproduction in mammals. Age (Dordr). 2013;35(3):921–7.

    Article  CAS  Google Scholar 

  65. Tarín JJ, Gómez-Piquer V, García-Palomares S, García-Pérez MA, Cano A. Absence of long-term effects of reproduction on longevity in the mouse model. Reprod Biol Endocrinol. 2014;12(1):84.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclosure

SA Keith and A Ghazi both declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjumand Ghazi.

Additional information

This article is part of the Topical Collection on Reproductive and Developmental Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keith, S.A., Ghazi, A. Recent Discoveries in the Reproductive Control of Aging. Curr Genet Med Rep 3, 26–34 (2015). https://doi.org/10.1007/s40142-014-0060-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-014-0060-8

Keywords

Navigation