Skip to main content
Log in

Interactive effects of sex, social environment, dietary restriction, and methionine on survival and reproduction in fruit flies

  • Published:
AGE Aims and scope Submit manuscript

Abstract

For the evolution of life histories, the trade-off between survival and reproduction is fundamental. Because sexes optimize fitness in different ways, this trade-off is expected to be resolved differently by males and females. Consequently, the sexes are predicted to respond differently to changes in resource availability. In fruit flies, research on dietary restriction has focused largely on females maintained in the absence of males, thereby neglecting sexual interactions that affect reproductive behavior of both sexes under more natural conditions. Here, we tested for the interactive effects of diet (40, 60, 100, and 300 % of standard yeast concentrations) and social environment (separate-sex vs. mixed-sex groups) on male and female Drosophila melanogaster life histories. Additionally, we evaluated the essential amino acid methionine as an agent that can uncouple the survival–reproduction trade-off. We show sex differences in the effect of social environment on survival patterns, but not on reproductive fitness. In females, yeast had a positive effect on reproduction and a negative effect on survival. In males, yeast had a negative effect on reproduction and the effect on survival depended on the social environment. Methionine reduced survival, but had no effect on reproduction. Our findings highlight the need to include both sexes and to vary social environments in research programs aimed at lifespan extension and call for further evaluation of the fecundity-restoring effect of methionine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bass TM, Grandison RC, Wong R, Martinez P, Partridge L, Piper MDW (2007) Optimization of dietary restriction protocols in Drosophila. J Gerontol A Biol Sci Med Sci 62:1071–1081

    Article  PubMed  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46

    Article  PubMed  CAS  Google Scholar 

  • Bolker B (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  • Boorman E, Parker GA (1976) Sperm (ejaculate) competition in Drosophila melanogaster, and the reproductive value of females to males in relation to female age and mating status. Ecol Entomol 1:145–155

    Article  Google Scholar 

  • Bross TG, Rogina B, Helfand SL (2005) Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell 4:309–317

    Article  PubMed  CAS  Google Scholar 

  • Dick KB, Ross CR, Yampolsky LY (2011) Genetic variation of dietary restriction and the effects of nutrient-free water and amino acid supplements on lifespan and fecundity of Drosophila. Genet Res 93:265–273

    Article  CAS  Google Scholar 

  • Everitt AV, Rattan SIS, Le Couteur DG, de Cabo R (2010) Calorie restriction, aging and longevity. Springer, New York

    Book  Google Scholar 

  • Flatt T (2011) Survival costs of reproduction in Drosophila. Exp Gerontol 46:369–375

    Article  PubMed  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326

    Article  PubMed  CAS  Google Scholar 

  • Fricke C, Bretman A, Chapman T (2008) Adult male nutrition and reproductive success in Drosophila melanogaster. Evolution 62:3170–3177

    Article  PubMed  Google Scholar 

  • Grandison RC, Piper MDW, Partridge L (2009a) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Grandison RC, Wong R, Bass TM, Partridge L, Piper MDW (2009b) Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster. PLoS One 4:e4067–e4067

    Article  PubMed  Google Scholar 

  • Greer E, Brunet A (2011) The genetic network of life-span extension by dietary restriction. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Elsevier Science, London, pp 3–23

    Chapter  Google Scholar 

  • Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397

    Article  PubMed  CAS  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363

    Article  Google Scholar 

  • Kabil H, Kabil O, Banerjee R, Harshman LG, Pletcher SD (2011) Increased transsulfuration mediates longevity and dietary restriction in Drosophila. Proc Natl Acad Sci USA 108:16831–16836

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TBL (1977) Evolution of aging. Nature 270:301–304

    Google Scholar 

  • Kirkwood TBL, Shanley DP (2005) Food restriction, evolution and ageing. Mech Ageing Dev 126:1011–1016

    Article  PubMed  Google Scholar 

  • Kuijper B, Stewart AD, Rice WR (2006) The cost of mating rises nonlinearly with copulation frequency in a laboratory population of Drosophila melanogaster. J Evol Biol 19:1795–1802

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JWO, Taylor PW, Soran N, Raubenheimer D (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci USA 105:2498–2503

    Article  PubMed  CAS  Google Scholar 

  • Magwere T, Chapman T, Partridge L (2004) Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 59:3–9

    Article  PubMed  Google Scholar 

  • Magwire MM, Yamamoto A, Carbone MA, Roshina NV, Symonenko AV, Pasyukova EG, Morozova TV, Mackay TFC (2010) Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. Plos Genet 6:e1001037

    Article  PubMed  Google Scholar 

  • Mair W, Piper MDW, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:e223–e223

    Article  PubMed  Google Scholar 

  • Maklakov AA, Simpson SJ, Zajitschek F, Hall MD, Dessmann J, Clissold F, Raubenheimer D, Bonduriansky R, Brooks RC (2008) Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr Biol 18:1062–1066

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  PubMed  CAS  Google Scholar 

  • Min K-J, Flatt T, Kulaots I, Tatar M (2007) Counting calories in Drosophila diet restriction. Exp Geront 42:247–251

    Article  Google Scholar 

  • Nuzhdin SV, Pasyukova EG, Dilda CL, Zeng ZB, Mackay TF (1997) Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci USA 94:9734–9739

    Article  PubMed  CAS  Google Scholar 

  • Parker GA, Smith VGF, Baker RR (1972) Origin and evolution of gamete dimorphism and male–female phenomenon. J Theor Biol 36:529–553

    Article  PubMed  CAS  Google Scholar 

  • Partridge L, Fowler K (1992) Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46:76–91

    Article  Google Scholar 

  • Partridge L, Pletcher SD, Mair W (2005) Dietary restriction, mortality trajectories, risk and damage. Mech Ageing Dev 126:35–41

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2009) nlme: linear and nonlinear mixed effects models. R package version 3:1–96

    Google Scholar 

  • Richter SH, Garner JP, Auer C, Kunert J, Würbel H (2010) Systematic variation improves reproducibility of animal experiments. Nat Methods 7:167–168

    Article  PubMed  CAS  Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer associates, Sunderland, Massachusetts, USA

  • Rose M, Charlesworth B (1980) A test of evolutionary theories of senescence. Nature 287:141–142

    Article  PubMed  CAS  Google Scholar 

  • Shanley DP, Kirkwood TB (2000) Calorie restriction and aging: a life-history analysis. Evolution 54:740–750

    PubMed  CAS  Google Scholar 

  • Shi Y, Buffenstein R, Van Remmen H (2010) Mitochondria, oxidative damage and longevity: what can comparative biology teach us? In: Wolf NS (ed) The comparative biology of aging. Springer, Heidelberg, pp 163–190

    Chapter  Google Scholar 

  • Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7:478–490

    Article  PubMed  CAS  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, New York

    Google Scholar 

  • Therneau T (2011a) R package ‘coxme’. R package version 2:1–3

    Google Scholar 

  • Therneau T (2011b) R package ‘survival’. R package version 2. 36–10

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man, 1871–1971. Aldine Publishing Co., Chicago, pp 136–179

    Google Scholar 

  • Troen AM, French EE, Roberts JF, Selhub J, Ordovas JM, Parnell LD, Lai CQ (2007) Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet. AGE 29:29–39

    Article  PubMed  CAS  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    Article  PubMed  CAS  Google Scholar 

  • Van Noordwijk AJ, Dejong G (1986) Acquisition and allocation of resources—their influence on variation in life-history tactics. Am Nat 128:137–142

    Article  Google Scholar 

Download references

Acknowledgments

We thank Henrik Lysell for his help during the experiment. The study was supported by a scholarship from the Wenner-Gren Foundations to F.Z., by grants from the Swedish Research Council to A.A.M and U.F., a grant from the Swedish Foundation for Strategic Research to U.F., and a European Research Council Starting Grant 2010 to A.A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Zajitschek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16.3 kb)

About this article

Cite this article

Zajitschek, F., Zajitschek, S.R.K., Friberg, U. et al. Interactive effects of sex, social environment, dietary restriction, and methionine on survival and reproduction in fruit flies. AGE 35, 1193–1204 (2013). https://doi.org/10.1007/s11357-012-9445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9445-3

Keywords

Navigation