Skip to main content
Log in

Comparison of P and cation cycling in two contrasting seasonally dry forest ecosystems

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

Interactions of N and P cycles and those of other macro-elements in forests are scarcely known.

Aim

This study compares the P cycle in two very different forest ecosystems where soil P availability is low (tropical dry forest in Mexico and Mediterranean forest in Spain) in relation to Ca, K, and Mg cycles.

Methods

Compiled data belonging to these two forest sites are discussed, comparing the P and base cation budgets and exploring relationships among P and base cation cycles.

Results

Broad differences between input and output of base cations were observed. Analysis of the P budget indicates P retention inside both forest ecosystems. The tropical dry forest has higher nutrient contents than those found in the Mediterranean temperate forest. Chemical composition of forest leaves and litters, and base cation–P ratios varied according to soil P availability and cation concentrations. However, P resorption is higher in the tropical dry forest than in the temperate one.

Conclusion

This study reveals the existence of P retention at the ecosystem level in both forests, but suggested P limitation at the Mediterranean forest seems to be stronger than that occurring at the tropical forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst 39:153–170

    Article  Google Scholar 

  • Campo J, Jaramillo VJ, Maass JM (1998) Pulses of soil phosphorus availability in a tropical dry forest: effects of seasonality and level of wetting. Oecologia 115:167–172

    Article  Google Scholar 

  • Campo J, Maass JM, Jaramillo VJ, Martínez-Yrízar A (2000) Calcium, potassium, and magnesium cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 49:21–36

    Article  CAS  Google Scholar 

  • Campo J, Maass M, Jaramillo VJ, Martínez-Yrízar A, Sarukhán J (2001a) Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 53:161–179

    Article  CAS  Google Scholar 

  • Campo J, Maass M, de Pablo L (2001b) Mineral weathering in a tropical dry forest of Mexico. Agrociencia 35:245–254

    Google Scholar 

  • Castle SC, Neff JC (2009) Plant response to nutrient availability across variable bedrock geologies. Ecosystems 12:101–113

    Article  CAS  Google Scholar 

  • Crews TE, Kitayama KA, Fownes J, Hebert D, Mueller-Dombois D, Riley RH, Vitousek PM (1995) Changes in soil phosphorus and ecosystem dynamics across a long soil chronosequence in Hawai’i. Ecology 76:1407–1424

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Negai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608

    Article  PubMed  CAS  Google Scholar 

  • Gallardo JF, Martín A, Moreno-Marcos G, Santa-Regina I (1998) Nutrient cycling in deciduous forest ecosystems of the ‘Sierra de Gata’ mountains: nutrient supplies to the soil through both litter and throughfall. Ann For Sci 55:771–784

    Article  Google Scholar 

  • Gallardo-Lancho JF (2000) Biogeochemistry of Mediterranean forest ecosystems: a case study. Soil Biochem 10:423–460

    CAS  Google Scholar 

  • García-Oliva F, Hernández G, Gallardo-Lancho JF (2006) Comparison of ecosystem C pools in three forests in Spain and Latin America. Ann For Sci 63:519–523

    Article  Google Scholar 

  • Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231–2255

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in terrestrial biosphere. Nature 454:327–330

    Article  PubMed  CAS  Google Scholar 

  • Inagaki M, Kamo K, Miyamoto K, Titin J, Jamalung L, Laponggan J, Miura S (2011) Nitrogen and phosphorus retranslocation and N:P ratios of litterfall in three tropical plantations: luxurious N and efficient P use by Acacia mangium. Plant Soil 341:295–307

    Article  CAS  Google Scholar 

  • Jaramillo VJ, Sanford RL Jr (1995) Nutrient cycling in tropical deciduous forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 346–361

    Google Scholar 

  • Knecht MF, Göransson A (2004) Terrestrial plants require nutrient in similar proportions. Tree Physiol 24:447–460

    Article  PubMed  CAS  Google Scholar 

  • Ladanai S, Ågren GI, Olsson BA (2010) Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13:302–316

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lott EJ (1985) Listados florísticos de México III. La Estación de Biología de Chamela, Jalisco. Herbario Nacional, Instituto de Biología. Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Mahowald N, Jickells TD, Baker AR, Artaxo P, Benítez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Mahenhaut W, McGee KA, Oskin GS, Siefert RL, Tsukuda S (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cycl 22:GB 4026

    Article  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Article  Google Scholar 

  • Moreno-Marcos G, Gallardo-Lancho JF (2002a) H+ budget in oligrotrophic Quercus pyrenaica forests: atmospheric and management-induced soil acidification? Plant Soil 243:11–22

    Article  CAS  Google Scholar 

  • Moreno-Marcos G, Gallardo-Lancho JF (2002b) Atmospheric deposition in oligotrophic Quercus pyrenaica forests: implications for forest nutrition. For Ecol Manage 171:17–29

    Article  Google Scholar 

  • Neff JC, Reynolds R, Sanford RL Jr, Fernández D, Lamothe P (2006) Controls of bedrock geochemistry on soil and plant nutrients in southeastern Utah. Ecosystems 9:879–893

    Article  CAS  Google Scholar 

  • Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–13

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. P Natl Acad Sci USA 101:11001–11006

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ (2009) Leaf phosphorus influences the photosynthesis-nitrogen relation. A cross-biome analysis of 314 species. Oecologia 160:207–212

    Article  PubMed  Google Scholar 

  • Rengel Z (2003) Handbook of soil acidity. Marcell Dekker Inc, New York

    Book  Google Scholar 

  • Sarukhán J, Maass JM (1990) Bases ecológicas para un manejo sostenido de los ecosistemas: el sistema de cuencas hidrológicas. In: Leff E (ed) Medio ambiente y desarrollo en México. UNAM-Porrúa, Mexico, pp 81–114

  • Sterner WW, Elser JJ (2002) Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431

    Article  PubMed  Google Scholar 

  • Turrión MB, Gallardo JF, González MI (2000) Distribution of P forms in natural and fertilized forest soils of the Central Western Spain: Plant response to superphosphate fertilization. Arid Soil Res Rehabil 14:159–173

    Article  Google Scholar 

  • Turrión MB, Gallardo JF, González MI (2002) Relationships between organic and inorganic P fractions with soil Fe and Al forms in forest soils of ‘Sierra de Gata’ mountains (Western Spain). In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Soil mineral-organic matter-microorganism interactions and ecosystem health. Elsevier, Amsterdam, pp 297–310

    Google Scholar 

  • Turrión MB, Schneider K, Gallardo JF (2008) Soil P availability along a catena located at the Sierra de Gata Mountains, Western Central Spain. For Ecol Manage 255:3254–3262

    Article  Google Scholar 

  • Vicente MA, Gallardo JF, Moreno-Marcos G, González MI (2003) Comparison of soil water-contents as measured with neutron probe and time domain reflectometry in a Mediterranean forest (“Sierra de Gata”, Central Western Spain). Ann For Sci 60:185–193

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical ecosystems. Ecology 65:285–298

    Article  CAS  Google Scholar 

  • Vitousek PM, Howarth RH (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    Article  PubMed  Google Scholar 

  • Walker TW, Syers JK (1976) Fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Katamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Global Ecol Biogeogr 18:532–542

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the three anonymous reviewers for their very useful and constructive comments.

Funding

Fist author was partially supported by sabbatical fellowships from the Mexican Consejo Nacional de Ciencia y Tecnología (138403), the Dirección General de Apoyo al Personal Académico from the Universidad Nacional Autónoma de México, and the Spanish Ministerio de Educación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Campo.

Additional information

Handling Editor: Matthias Dobbertin

Contribution of the co-authors

Julio Campo: designing the study, and writing the paper.

Juan F. Gallardo: writing the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campo, J., Gallardo, J.F. Comparison of P and cation cycling in two contrasting seasonally dry forest ecosystems. Annals of Forest Science 69, 887–894 (2012). https://doi.org/10.1007/s13595-012-0216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-012-0216-1

Keywords

Navigation