Skip to main content

Advertisement

Log in

Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Receptors of the ErbB family are involved in the development of various cancers, and the inhibition of these receptors represents an attractive therapeutic concept. Upon ligand binding, ErbB receptors become activated as homo- or heterodimers, leading to the activation of downstream signaling cascades that result in the facilitation of cell proliferation and migration. A region of the extracellular part of the receptor, termed the ‘dimerization arm’, is important for the formation of receptor dimers and represents an attractive target for the design of ErbB inhibitors.

Methods

An ErbB1 targeting peptide, termed Herfin-1, was designed based on a model of the tertiary structure of the EGF-EGFR ternary complex. The binding kinetics of this peptide were determined employing surface plasmon resonance analyses. ErbB1-4 expression and phosphorylation in human glioblastoma cell lines U87 and U118 were determined by Western blotting using specific antibodies. Cell proliferation was determined by MTS staining. Cell migration was examined using a Chemotaxis Migration Kit. Neurite outgrowth from primary cerebellar granule neurons was evaluated by fluorescence microscopy and image processing.

Results

The present study shows that Herfin-1 functions as an ErbB1 antagonist. It binds to the extracellular domain of ErbB1 with a KD value of 361 nM. In U87 and U118 cells, both expressing high levels of ErbB1, Herfin-1 inhibits EGF-induced ErbB1 phosphorylation and cell migration. Additionally, Herfin-1 was found to increase neurite outgrowth in cerebellar granule neurons, likely through the inhibition of a sustained weak ErbB1 activation.

Conclusions

Targeting the ErbB1 receptor dimerization interface is a promising strategy to inhibit receptor activation in ErbB1-expressing glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Normanno, C. Bianco, L. Strizzi et al., The ErbB receptors and their ligands in cancer: an overview. Curr. Drug Targets 6, 243–257 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. N.E. Hynes, H.A. Lane, ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. P.M. Guy, J.V. Platko, L.C. Cantley, R.A. Cerione, K.L. Carraway III, Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl. Acad. Sci. U. S. A. 91, 8132–8136 (1994)

    Article  PubMed  CAS  Google Scholar 

  4. N.E. Hynes, G. MacDonald, ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol. 21, 177–184 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. T.P. Garrett, N.M. McKern, M. Lou et al., Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110, 763–773 (2002)

    Article  PubMed  CAS  Google Scholar 

  6. H. Ogiso, R. Ishitani, O. Nureki et al., Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. J. Schlessinger, Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. H.S. Cho, D.J. Leahy, Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 1330–1333 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. S. Bouyain, P.A. Longo, S. Li, K.M. Ferguson, D.J. Leahy, The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand. Proc. Natl. Acad. Sci. U. S. A. 102, 15024–15029 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. F. Walker, S.G. Orchard, R.N. Jorissen et al., CR1/CR2 interactions modulate the functions of the cell surface epidermal growth factor receptor. J. Biol. Chem. 279, 22387–22398 (2004)

    Article  PubMed  CAS  Google Scholar 

  11. K.M. Ferguson, M.B. Berger, J.M. Mendrola, H.S. Cho, D.J. Leahy, M.A. Lemmon, EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003)

    Article  PubMed  CAS  Google Scholar 

  12. A.W. Burgess, H.S. Cho, C. Eigenbrot et al., An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 12, 541–552 (2003)

    Article  PubMed  CAS  Google Scholar 

  13. R.N. Jorissen, F. Walker, N. Pouliot, T.P. Garrett, C.W. Ward, A.W. Burgess, Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 31–53 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. D.S. Salomon, R. Brandt, F. Ciardiello, N. Normanno, Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19, 183–232 (1995)

    Article  PubMed  CAS  Google Scholar 

  15. N. Normanno, L.A. De, C. Bianco et al., Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. A.J. Ekstrand, N. Sugawa, C.D. James, V.P. Collins, Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc. Natl. Acad. Sci. U. S. A. 89, 4309–4313 (1992)

    Article  PubMed  CAS  Google Scholar 

  17. S.V. Sharma, D.W. Bell, J. Settleman, D.A. Haber, Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. J. Marshall, Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer 107, 1207–1218 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. B.W. Park, H.T. Zhang, C. Wu et al., Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo. Nat. Biotechnol. 18, 194–198 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. T. Nakamura, H. Takasugi, T. Aizawa et al., Peptide mimics of epidermal growth factor (EGF) with antagonistic activity. J. Biotechnol. 116, 211–219 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. A. Berezov, J. Chen, Q. Liu, H.T. Zhang, M.I. Greene, R. Murali, Disabling receptor ensembles with rationally designed interface peptidomimetics. J. Biol. Chem. 277, 28330–28339 (2002)

    Article  PubMed  CAS  Google Scholar 

  22. R. Xu, G.K. Povlsen, V. Soroka, E. Bock, V. Berezin, A peptide antagonist of the ErbB1 receptor inhibits receptor activation, tumor cell growth and migration in vitro and xenograft tumor growth in vivo. Cell. Oncol. 32, 259–274 (2010)

    PubMed  CAS  Google Scholar 

  23. R.W. Wong, L. Guillaud, The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev. 15, 147–156 (2004)

    Article  PubMed  CAS  Google Scholar 

  24. C. Birchmeier, ErbB receptors and the development of the nervous system. Exp. Cell Res. 315, 611–618 (2009)

    Article  PubMed  CAS  Google Scholar 

  25. M. Ozaki, S. Kishigami, R. Yano, Expression of receptors for neuregulins, ErbB2, ErbB3 and ErbB4, in developing mouse cerebellum. Neurosci. Res. 30, 351–354 (1998)

    Article  PubMed  CAS  Google Scholar 

  26. M. Yamada, T. Ikeuchi, H. Hatanaka, The neurotrophic action and signalling of epidermal growth factor. Prog. Neurobiol. 51, 19–37 (1997)

    Article  PubMed  CAS  Google Scholar 

  27. F. Gomez-Pinilla, D.J. Knauer, M. Nieto-Sampedro, Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization. Brain Res. 438, 385–390 (1988)

    Article  PubMed  CAS  Google Scholar 

  28. M. Sibilia, J.P. Steinbach, L. Stingl, A. Aguzzi, E.F. Wagner, A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 17, 719–731 (1998)

    Article  PubMed  CAS  Google Scholar 

  29. G.K. Povlsen, V. Berezin, E. Bock, Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth. J. Neurochem. 104, 624–639 (2008)

    PubMed  CAS  Google Scholar 

  30. V. Koprivica, K.S. Cho, J.B. Park et al., EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310, 106–110 (2005)

    Article  PubMed  CAS  Google Scholar 

  31. A. Schousboe, A. Meier, J. Drejer, L. Hertz, Preparation of Primary Cultures of Mouse (rat) Cerebellar Granule Cells (Alan R Liss, New York, 1989), pp. 203–206

    Google Scholar 

  32. C. Lu, L.Z. Mi, M.J. Grey et al., Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol. Cell. Biol. 30, 5432–5443 (2010)

    Article  PubMed  CAS  Google Scholar 

  33. P.C. Burger, D.K. Pearl, K. Aldape et al., Small cell architecture–a histological equivalent of EGFR amplification in glioblastoma multiforme? J. Neuropathol. Exp. Neurol. 60, 1099–1104 (2001)

    PubMed  CAS  Google Scholar 

  34. H. Ohgaki, P. Kleihues, Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol. 170, 1445–1453 (2007)

    Article  PubMed  CAS  Google Scholar 

  35. P.S. Ritch, S.L. Carroll, H. Sontheimer, Neuregulin-1 enhances survival of human astrocytic glioma cells. Glia 51, 217–228 (2005)

    Article  PubMed  Google Scholar 

  36. R.V. LaRocca, M. Rosenblum, B. Westermark, M.A. Israel, Patterns of proto-oncogene expression in human glioma cell lines. J. Neurosci. Res. 24, 97–106 (1989)

    Article  PubMed  CAS  Google Scholar 

  37. E. Carrasco-Garcia, M. Saceda, S. Grasso et al., Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines. Exp. Cell Res. 317, 1476–1489 (2011)

    Article  PubMed  CAS  Google Scholar 

  38. M.K. Ghosh, P. Sharma, P.C. Harbor, S.O. Rahaman, S.J. Haque, PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells. Oncogene 24, 7290–7300 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. P.H. Huang, A.M. Xu, F.M. White, Oncogenic EGFR signaling networks in glioma. Sci. Signal. 2, re6 (2009)

    Article  PubMed  Google Scholar 

  40. Z. Liu, J. Klominek, Inhibition of proliferation, migration, and matrix metalloprotease production in malignant mesothelioma cells by tyrosine kinase inhibitors. Neoplasia 6, 705–712 (2004)

    Article  PubMed  CAS  Google Scholar 

  41. S.H. Kim, Y.C. Song, S.H. Kim, H. Jo, Y.S. Song, Effect of epidermal growth factor receptor inhibitor alone and in combination with cisplatin on growth of vulvar cancer cells. Ann. N. Y. Acad. Sci. 1171, 642–648 (2009)

    Article  PubMed  CAS  Google Scholar 

  42. S.M. Huang, J. Li, P.M. Harari, Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol. Cancer Ther. 1, 507–514 (2002)

    PubMed  CAS  Google Scholar 

  43. J.L. Eller, S.L. Longo, D.J. Hicklin, G.W. Canute, Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme. Neurosurgery 51, 1005–1013 (2002)

    PubMed  Google Scholar 

  44. G. Karpel-Massler, U. Schmidt, A. Unterberg, M.E. Halatsch, Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Mol. Cancer Res. 7, 1000–1012 (2009)

    Article  PubMed  CAS  Google Scholar 

  45. S. Kobayashi, T.J. Boggon, T. Dayaram et al., EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005)

    Article  PubMed  CAS  Google Scholar 

  46. J. Mendelsohn, J. Baselga, Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 21, 2787–2799 (2003)

    Article  PubMed  CAS  Google Scholar 

  47. M. Kirsch, G. Schackert, P.M. Black, Metastasis and angiogenesis. Cancer Treat. Res. 117, 285–304 (2004)

    Article  PubMed  CAS  Google Scholar 

  48. D. Kedrin, J. Wyckoff, P.J. Boimel et al., ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasation. Clin. Cancer Res. 15, 3733–3739 (2009)

    Article  PubMed  CAS  Google Scholar 

  49. T. Turner, P. Chen, L.J. Goodly, A. Wells, EGF receptor signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. Clin. Exp. Metastasis 14, 409–418 (1996)

    Article  PubMed  CAS  Google Scholar 

  50. M. Fedor-Chaiken, P.W. Hein, J.C. Stewart, R. Brackenbury, M.S. Kinch, E-cadherin binding modulates EGF receptor activation. Cell Commun. Adhes. 10, 105–118 (2003)

    PubMed  CAS  Google Scholar 

  51. P. Reddy, L. Liu, C. Ren et al., Formation of E-cadherin-mediated cell-cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells. Mol. Endocrinol. 19, 2564–2578 (2005)

    Article  PubMed  CAS  Google Scholar 

  52. J. Gavard, S. Gutkind, in Cancer Drug Discovery and Development: EGFR Signaling Networks in Cancer Therapy eds. by J. D. Haley, W. J. Gullick. A Molecular Crosstalk between E-cadherin and EGFR Signaling Networks (Humana Press, 2008), pp. 139–154

  53. M. Xia, M. Hu, J. Wang et al., Identification of the role of Smad interacting protein 1 (SIP1) in glioma. J. Neurooncol. 97, 225–232 (2010)

    Article  PubMed  CAS  Google Scholar 

  54. M. Gotz, W.B. Huttner, The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005)

    Article  PubMed  Google Scholar 

  55. A. Fiederling, R. Ewert, A. Andreyeva, K. Jungling, K. Gottmann, E-cadherin is required at GABAergic synapses in cultured cortical neurons. Neurosci. Lett. 501, 167–172 (2011)

    Article  PubMed  CAS  Google Scholar 

  56. S.A. Oblander, S.E. Ensslen-Craig, F.M. Longo, S.M. Brady-Kalnay, E-cadherin promotes retinal ganglion cell neurite outgrowth in a protein tyrosine phosphatase-mu-dependent manner. Mol. Cell. Neurosci. 34, 481–492 (2007)

    Article  PubMed  CAS  Google Scholar 

  57. K. Shimamura, T. Takahashi, M. Takeichi, E-cadherin expression in a particular subset of sensory neurons. Dev. Biol. 152, 242–254 (1992)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Help from the Novo Nordisk Foundation Center for Protein Research (Copenhagen, Denmark) with the binding studies performed using the Biacore T200 instrument is greatly appreciated.

Funding

This work was supported by the Lundbeck Foundation (R13-A1398 to V.B.) and the Danish Research Council (09–065919 to V.B., 09–071033 to E.B.).

Conflict of interest

There is no conflict of interest for all authors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikkel Staberg.

Electronic supplementary material

Supplementary Fig. 1

Schematic presentation of the Herfin-1 peptide tetramer (JPEG 15 kb)

High resolution image (TIFF 9538 kb)

Supplementary Fig. 2

Sequence alignment of the extended part of the C-terminal (Herfin motifs) and N-terminal (Herfin counter-motifs involved in hydrophobic interactions with the Herfin motif) regions of the dimerization arm of four ErbB receptors (ErbB1, ErbB2, ErbB3, and ErbB4; UniProtKB/Swiss-Prot accession no. P00533, P04626, P21860, and Q15303, respectively) (JPEG 47 kb)

High resolution image (TIFF 14290 kb)

Supplementary Fig. 3

Sequence alignment of the N-terminal region of the ErbB1 dimerization arm and N-terminal region of E-cadherin extracellular domain 3 (UniProtKB/Swiss-Prot accession no. P00533 and P09803, respectively). The advanced BLAST program was used (http://www.ch.embnet.org/software/bBLAST.html; accessed June 6, 2012) (JPEG 11 kb)

High resolution image (TIFF 9493 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staberg, M., Riemer, C., Xu, R. et al. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells. Cell Oncol. 36, 201–211 (2013). https://doi.org/10.1007/s13402-013-0128-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-013-0128-6

Keywords

Navigation