Skip to main content
Log in

PA6/MWNT nanocomposites fabricated using electrospun nanofibers containing MWNT

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The electrospinning process with an applied electric field is used to extrude submicron fibers from polymeric solutions and has been recognized as a viable method for dispersing and aligning nanoparticles into a nanofibrous polymer matrix. In this study, electrospun nanofibers containing multi-walled carbon nanotubes (MWNTs) were used as a preform to fabricate MWNT reinforced polymer nanocomposites. The electrospun nanofibers were prepared by electrospinning a solution of polyamide 6 (PA6) and multiwalled carbon nanotubes (MWNTs). Raman spectroscopy, TGA, DSC, XRD, and TEM showed that the MWNTs were well dispersed and aligned in the electrospun nanofibers. The electrospun nanofibers in mat form were then consolidated into a solid composite by a thermal pressing. The initial modulus and tensile strength of the nanocomposites were improved by the reinforcement of the MWNTs. However, their breaking strain was lowered. This shortcoming was overcome by introducing a functional group onto the MWNTs through a surface treatment. Overall, the current method (modification of MWNTs, electrospinning, and thermal fabrication) can improve the tensile properties, including initial modulus, tensile strength and breaking strain, of PA6/MWNTs nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. H. S. Nalwa, Ed., Handbook of nanostructured material and nanotechnology, Academic Press, San Diego, 2000.

    Google Scholar 

  3. X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, Mater. Sci. Eng. R, 49, 89 (2005).

    Article  Google Scholar 

  4. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000).

    Article  CAS  Google Scholar 

  5. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer, 40, 5967 (1999).

    Article  CAS  Google Scholar 

  6. X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, Chem. Mater., 12, 1049 (2000).

    Article  CAS  Google Scholar 

  7. B. Z. Tang and H. Xu, Macromolecules, 32, 2569 (1999).

    Article  CAS  Google Scholar 

  8. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature, 367, 519 (1994).

    Article  Google Scholar 

  9. H. Hiura, T. W. Ebbesen, and K. Tanigaki, Adv. Mater., 7, 275 (1995).

    Article  CAS  Google Scholar 

  10. W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, and K. Yoshino, Carbon, 41, 1551 (2003).

    Article  CAS  Google Scholar 

  11. Z. Jin, K. P. Pramoda, S. H. Goh, and G. Xu, Mater. Res. Bull., 37, 271 (2002).

    Article  CAS  Google Scholar 

  12. J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, and S. Xie, J. Appl. Polym. Sci., 74, 2605 (1999).

    Article  CAS  Google Scholar 

  13. Y. Lin, B. Zhou, K. A. Shiral Fernando, P. Liu, L. F. Allard, and Y.-P. Sun, Macromolecules, 36, 7199 (2003).

    Article  CAS  Google Scholar 

  14. J. E. Riggs, Z. Guo, D. L. Carroll, and Y.-P. Sun, J. Am. Chem. Soc., 122, 5879 (2000).

    Article  CAS  Google Scholar 

  15. T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, and M. Yumura, Adv. Mater., 14, 1380 (2002).

    Article  CAS  Google Scholar 

  16. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, Science, 290, 1331 (2000).

    Article  CAS  Google Scholar 

  17. P. Kannan, S. J. Eichhorn, and R. J. Young, Nanotechnology, 18, 235707 (2007).

    Article  Google Scholar 

  18. J. S. Jeong, S. Y. Jeon, T. Y. Lee, J. H. Park, J. H. Shin, P. S. Alegaonkar, A. S. Berdinsky, and J. B. Yoo, Diam. Relat. Mater., 15, 1839 (2006).

    Article  CAS  Google Scholar 

  19. H. Meng, G. X. Sui, P. F. Fang, and R. Yang, Polymer, 49, 610 (2008).

    Article  CAS  Google Scholar 

  20. G.-X. Chen, H.-S. Kim, B. H. Park, and J.-S. Yoon, Polymer, 47, 4760 (2006).

    Article  CAS  Google Scholar 

  21. B. S. Kim, S. H. Bae, Y. H. Park, and J. H. Kim, Macromol. Res., 15, 357 (2007).

    CAS  Google Scholar 

  22. I. Park, M. Park, J. Kim, H. Lee, and M. S. Lee, Macromol. Res., 15, 498 (2007).

    CAS  Google Scholar 

  23. M. Burghard, Surf. Sci. Rep., 58, 1 (2005).

    CAS  Google Scholar 

  24. T. D. Fornes and D. R. Paul, Polymer, 44, 3945 (2003).

    Article  CAS  Google Scholar 

  25. J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 877 (2004).

    Article  CAS  Google Scholar 

  26. C. Zhao, G. Hu, R. Justice, D. W. Schaefer, S. Zhang, M. Yang, and C. C. Han, Polymer, 46, 5125 (2005).

    Article  CAS  Google Scholar 

  27. L. Penel-Pierron, R. Séguéla, J.-M. Lefebvre, V. Miri, C. Depecker, M. Jutigny, and J. Pabiot, J. Polym. Sci. Part B: Polym. Phys., 39, 1224 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woong-Ryeol Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BS., Yu, WR. PA6/MWNT nanocomposites fabricated using electrospun nanofibers containing MWNT. Macromol. Res. 18, 162–169 (2010). https://doi.org/10.1007/s13233-009-0138-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-009-0138-4

Keywords

Navigation