Skip to main content

Advertisement

Log in

Wood chips as soil conservation in field conditions

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The soil conditioner in processes of soil conservation is important especially in heavily eroded areas. Because in this study done in Educational and Research Forest Watershed of Tarbiat Modares University, north of Iran, the experiments created four treatments of control and different wood chips with rates of 0.5, 1, and 1.5 kg m−2, by rainfall simulation in rainfall intensity of 60 mm h−1, and plot scale of 1 m2 on changing ponding time, runoff coefficient, sediment concentration, and soil loss. The results showed that the average change ponding time in control treatment and wood chip treatments with rates of 0.5, 1, and 1.5 kg m−2 were 4.25, 7.48, 11.63, and 12.45 min. Also, the average change runoff coefficient in control treatment and wood chip treatments with rates of 0.5, 1, and 1.5 kg m−2 were 50.03, 26.27, 15.28, and 13.17 %. The results also indicated that the wood chips could decrease average soil loss with the rates of −52.15, −82.18, and −89.35 % compared with control treatment for 0.5, 1, and 1.5 kg m−2 of wood chips, respectively. The one-way ANOVA results showed that the runoff coefficient, sediment concentration, and soil loss decreased with increasing wood chip amount, and the effect of conservation treatment was significant on study variables (R 2 = 0.99). But, the ponding time increased with increasing wood chip amount, and this effect was significant on study variables (R 2 = 0.99).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adekalu KO, Olorunfemi IA, Osunbitan JA (2007) Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. Biores Tech 98:912–917. doi:10.1016/j.biortech.2006.02.044

    Article  Google Scholar 

  • Assouline S, Ben-Hur M (2006) Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena 66:211–220. doi:10.1016/j.catena.2006.02.005

    Article  Google Scholar 

  • Bento-Gonçalvesa A, Vieiraa A, Úbedab X, Martin D (2012) Fire and soils: key concepts and recent advances. Geoderma 191:3–13. doi:10.1016/j.geoderma.2012.01.004

    Article  Google Scholar 

  • Berendse F, van Ruijven J, Jongejans E, Keesstra S (2015) Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18(5):881–888. doi:10.1007/s10021-015-9869-6

    Article  Google Scholar 

  • Bisantino T, Bingner R, Chouaib W, Gentile F, Trisorio Liuzzi G (2015) Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the Annagnps model. Land Degrad Dev 26(4):340–355. doi:10.1002/ldr. 2213

    Article  Google Scholar 

  • Borrelli P, Marker M, Schutt B (2015) Modelling post-tree-harvesting soil erosion and sediment deposition potential in the Turano river basin (Italian central Apennine). Land Degrad Dev 26(4):356–366. doi:10.1002/ldr. 2214

    Article  Google Scholar 

  • Brevik EC, Cerda A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Ost K (2015) The interdisciplinary nature of soil. Soil 1:117–129. doi:10.5194/soil-1-117-2015

    Article  Google Scholar 

  • Buchanan JR, (2000) The use of wood chips to control soil erosion on construction sites. Unpublished dissertation, The University of Tennessee, Department of Civil and Environmental Engineering. Knoxville, Tenn.

  • Buchanan JR, Yoder DC, Denton HP, Smoot JL (2002) Wood chips as a soil cover for construction sites with steep slopes. Am Soci Agricul Eng 18(6):679–683. doi:10.13031/2013.11322

    Google Scholar 

  • Cerda A (1998a) The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Can J Soil Sci 78(2):321–330

    Article  Google Scholar 

  • Cerda A (1998b) Effect of climate on surface flow along a climatological gradient in Israel: a field rainfall simulation approach. J Arid Environ 38(2):145–159. doi:10.1006/jare.1997.0342

    Article  Google Scholar 

  • Cerda A (1999) Parent material and vegetation affect soil erosion in eastern Spain. Soil SciSoci Am J 63:362–368. doi:10.2136/sssaj1999.03615995006300020014x

    Article  Google Scholar 

  • Cerda A, Doerr SH (2005) The influence of vegetation recovery on soil hydrology and erodibility following fire: an eleven year investigation. Int J Wild land Fire 14(4):423–437. doi:10.1071/WF05044

    Article  Google Scholar 

  • Cerda A, Jurgensen MF (2011) Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena 85(3):231–236. doi:10.1016/j.catena.2011.01.008

    Article  Google Scholar 

  • Cerda A, Flanagan DC, le Bissonnais Y, Boardman J (2009) Soil erosion and agriculture. Soil Till Res 106(1):107–108. doi:10.1016/j.still.2009.10.006

    Article  Google Scholar 

  • Cerda A, Gonzalez-Pelayo O, Gimenez-Morera A, Jordan A, Pereira P, Novara A, Brevik EC, Prosdocimi M, Mahmoodabadi M, Keesstra S, Garcia Orenes F, Ritsema C (2016) The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in eastern Spain under low frequency–high magnitude simulated rainfall events. Soil Res 54(2):154–165. doi:10.1071/SR15092

    Article  Google Scholar 

  • Choi J, Shin M, Yoon J, Jang J, (2012) Effect of rice straw mulch on runoff and NPS pollution discharges from a vegetable field. Poster presented at the International Conference of Agriculture Engineering, Valencia, Spain.8–12 July 2012. http://cigr.ageng2012.org/comunicaciones-online/htdocs/principal.php?seccion=posters&idcomunicacion=12844&tipo=4.

  • Copeland NS, Sharratt BS, Wu JQ, Foltz RB, Dooley JH (2009) A wood-strand material for wind erosion control: effects on total sediment loss, PM10 vertical material for wind erosion control: effects on total sediment loss, PM10 vertical flux, and PM10 loss. J Environ Qual 38:139–148. doi:10.2134/jeq2008.0115

    Article  Google Scholar 

  • Decock C, Lee J, Necpalova M, Pereira EIP, Tendall DM, Six J (2015) Mitigating N2O emissions from soil: from patching leaks to transformative action. Soil 1:687–694. doi:10.5194/soil-1-687-2015

    Article  Google Scholar 

  • Defersha MB, Quraishi S, Mellese AM (2011) The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia. Hydrol Earth System Sci 15:2367–2375. doi:10.1016/j.catena.2011.11.002

    Article  Google Scholar 

  • Edwards LM, Volka A, Burney JR (2000) Mulching potatoes: aspects of mulch management systems and soil erosion. Am J Potato Res 77:225–232. doi:10.1007/BF02855790

    Article  Google Scholar 

  • Ekwue EI (1991) The effects of soil organic matter content, rainfall duration and aggregate size on soil detachment. Soil Technol 4:197–207. doi:10.1016/0933-3630(91)90001-4

    Article  Google Scholar 

  • Elliot, WJ, Robichaud, PR, (2001) Comparing erosion risks from forest operations to wildfire. In: Peter Schiess and Finn Krogstad, editors, Proceedings of The International Mountain Logging and 11th Pacific Northwest Skyline Symposium: 2001 - A Forest Engineering Odyssey. Seattle, WA: College of Forest Resources, University of Washington and International Union of Forestry Research Organizations. 78–89. Presented at The International Mountain Logging and 11th Pacific Northwest Skyline Symposium 2001, December 10--12, 2001, Seattle, WA.

  • Foltz RB, Copeland NS (2009) Evaluating the efficacy of wood shreds for mitigating erosion. Journal of Environ Manage 90:779–785. doi:10.1016/j.jenvman.2008.01.006

    Article  Google Scholar 

  • Foltz RB, Dooley JH (2003) Comparison of erosion reduction between wood strands and agricultural straw. Trans the ASAE 46(5):1389–1396. doi:10.1016/j.catena.2009.09.003

    Google Scholar 

  • Foltz RB, Wagenbrenner NS (2010) An evaluation of three wood shred blends for post-fire erosion control using indoor simulated rain events on small plots. Catena 80:86–94. doi:10.1016/j.catena.2009.09.003

    Article  Google Scholar 

  • Fox M, Bryan RB (2000) The relationship of soil loss by interrill erosion to slope gradient. Catena 38:211–222. doi:10.1016/S0341-8162(99)00072-7

    Article  Google Scholar 

  • Gessesse B, Bewket W, Brauning A (2015) Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degrad Dev 26(7):711–724. doi:10.1002/ldr.2276

    Article  Google Scholar 

  • Ghahramani A, Ishikawa Y, Gomi T (2011) Downslope soil detachment–transport on steep slopes via rain splash. Hydrol Process 25:2471–2480. doi:10.1002/hyp.8086

    Article  Google Scholar 

  • Gholami L, Banasik K, Sadeghi SHR, Khaledi Darvishan AV, Hejduk L (2014) Effectiveness of straw mulch on infiltration, splash erosion, runoff and sediment in laboratory conditions. J Water Land Dev 22:51–60. doi:10.13031/2013.4842

    Article  Google Scholar 

  • Gholami L, Sadeghi SHR, Homaee M (2013) Straw mulching effect on splash erosion, runoff and sediment yield from eroded plots. Soil Sci Soci Am J 77:268–278. doi:10.2136/sssaj2012.0271

    Article  Google Scholar 

  • Groenier J, Showers C, (2004) Shredding small trees to create mulch for erosion control. Engineering Tech Tips. USDA Forest Service, Technology Development Program, Missoula, MT.

  • Jimenez MN, Fernandez-Ondono E, Ripoll MA, Castro-Rodriguez J, Huntsinger L, Navarro FB (2016) Stones and organic mulches improve the Quercus ilex L. A forestation success under Mediterranean climatic conditions. Land Degrad Dev 7(2):357–365. doi:10.1002/ldr.2250

    Article  Google Scholar 

  • Jordan A, Zavala LM, Gi J (2010) Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81:77–85. doi:10.1016/j.catena.2010.01.007

    Article  Google Scholar 

  • Keesstra S, Pereira P, Novara A, Brevik EC, Azorin-Molina C, Parras-Alcantara L, Jordan A, Cerda A (2016) Effects of soil management techniques on soil water erosion in apricot orchards. Sci Total Environ 551-552:357–366. doi:10.1016/j.scitotenv.2016.01.182

    Article  Google Scholar 

  • Keesstra SD, Geissen V, van Schaik L, Mosse K, Piiranen S (2012) Soil as a filter for groundwater quality. Environ Sustain 4:507–516. doi:10.1016/j.cosust.2012.10.007

    Google Scholar 

  • Khaledi Darvishan AV, Homayounfar V, Sadeghi SHR (2016) The impact of standard preparation practice on the runoff and soil erosion rates under laboratory conditions. Solid Earth 7:1293–1302. doi:10.5194/se-7-1293-2016

    Article  Google Scholar 

  • Khaledi Darvishan AV, Sadeghi SHR, Homaee M, Arabkhedri M (2014) Measuring sheet erosion using synthetic color-contrast aggregates. Hydrol Process 28(15):4463–4471. doi:10.1002/hyp.9956

    Article  Google Scholar 

  • Kukal SS, Sarkar M (2010) Splash erosion and infiltration in relation to mulching and polyvinyl alcohol application in semi-arid tropics. Arch Agron Soil Sci 56(46):697–705. doi:10.1080/03650340903208871

    Article  Google Scholar 

  • Kukal SS, Sarkar M (2011) Laboratory simulation studies on splash erosion and crusting in relation to surface roughness and raindrop size. J Indian Soci Soil Sci 59(1):87–93

    Google Scholar 

  • Lal R (1976) Soil erosion on alfisols in western Nigeria ii effect of mulch rates. Geoderma 16:377–382. doi:10.1016/0016-7061(76)90002-1

    Article  Google Scholar 

  • Lattanzi AR, Meyer LD, Baumgardner MF (1974) Influences of mulch rate and slope steepness on interrill erosion. Soil Sci Soc Am J 38:946–950. doi:10.2136/sssaj1974.03615995003800060030x

    Article  Google Scholar 

  • León J, Badía D, Echeverría MT (2015) Comparison of different methods to measure soil erosion in the Central Ebro Valley. CIG 41(1):165–180. doi:10.18172/cig.2703

    Article  Google Scholar 

  • León J, Echeverría MT, Badía D, Martí C, Álvarez C (2012) Effectiveness of wood chips cover at reducing erosion in two contrasted burnt soils. Z Geomorphol 57(1):27–37. doi:10.1127/0372-8854/2012/S-00086

    Article  Google Scholar 

  • Liu Y, Tao Y, Wan KY, Zhang GS, Liu DB, Xiong GY, Chen F (2012) Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou reservoir area of China. Agric Water Manag 110:34–40. doi:10.1016/j.agwat.2012.03.011

    Article  Google Scholar 

  • Lory J, Adams J, Eghball B, Klopfenstein TJ, Powers JE, (2002) Effect of sawdust or acid application to pen surfaces on nitrogen losses from open-dirt feedlots. Nebraska Beef Cattle Reports. Paper 282. http://digitalcommons.unl.edu/animalscinbcr/282.

  • Mannering JV, Meyer LD (1963) Effects of various rates of surface mulch on infiltration and erosion. Soil Sci Soci Am 27:84–86. doi:10.2136/sssaj1963.03615995002700010029x

    Article  Google Scholar 

  • Martinez-Murillo JF, Nadal-Romero E, Regues D, Cerda A, Poesen J (2013) Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: a review. Catena 106:101–112. doi:10.1016/j.catena.2012.06.001

    Article  Google Scholar 

  • McGregor KC, Bengtson RL, Mutchler CK (1988) Effects of surface straw on interrill runoff and erosion of Grenada silt loam soil. Trans ASAE 31:111–116

    Article  Google Scholar 

  • Mekonnen M, Keesstra SD, Stroosnijder L, Baartman JEM, Maroulis J (2015) Soil conservation through sediment trapping: a review. Land Degrad Dev 26(6):544–556. doi:10.1002/ldr. 2308

    Article  Google Scholar 

  • Miyata S, Kosugi K, Gomi T, Mizuyama T (2009) Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water Resour Res 45:W06402. doi:10.1029/2008WR007270

    Article  Google Scholar 

  • Moreno-Ramon H, Quizembe SJ, Ibanez-Asensio S (2014) Coffee husk mulch on soil erosion and runoff: experiences under rainfall simulation experiment. Solid Earth 5(2):851–862. doi:10.5194/se-5-851-2014

    Article  Google Scholar 

  • Morgan P, Moy M, Droske CA, Lentile LB, Lewis SA, Robichaud PR, Hudak AT (2014) Vegetation response after post-fire mulching and native grass seeding. Fire Ecology 10(3):49–62. doi:10.4996/fireecology.1003049

    Article  Google Scholar 

  • Morgan RPC (1978) Field studies of rain splash erosion. Earth Surf Process Landf 3:295–299

    Article  Google Scholar 

  • Mwango SB, Msanya BM, Mtakwa PW, Kimaro DN, Deckers J, Poesen J (2016) Effectiveness of mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the Usambara Mountains, Tanzania. Land Degrad Dev. doi:10.1002/ldr.2332

    Google Scholar 

  • Nanko K, Giambelluca TW, Sutherland RA, Mudd RG, Nullet MA, Ziegler AD (2015) Erosion potential under miconiacalvescens stands on the island of Hawai’i. Land Degrad Dev 26(3):218–226. doi:10.1002/ldr.2200

    Article  Google Scholar 

  • Novara A, Gristina L, Saladino SS, Santoro A, Cerda A (2011) Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Till Res 11(7):140–147. doi:10.1016/j.still.2011.09.007

    Article  Google Scholar 

  • Novara A, Keesstra S, Cerda A, Pereira P, Gristina L (2016) Understanding the role of soil erosion on CO2-C loss using 13C isotopic signatures in abandoned Mediterranean agricultural land. Sci Total Environ 550:330–336. doi:10.1016/j.scitotenv.2016.01.095

    Article  Google Scholar 

  • Pérez-Cabello F, Cerdà A, de la Riva J, Echeverría MT, García-Martín A, Ibarra P, Lasanta T, Montorio R, Palacios V (2012) Micro-scale post-fire surface cover changes monitored using high spatial resolution photography in a semiarid environment: a useful tool in the study of post-fire soil erosion processes. J Arid Envir 76:88–96

    Article  Google Scholar 

  • Poesen JWA, Lavee H (1991) Effects of size and incorporation of synthetic mulch on runoff and sediment yield from interrills in a laboratory study with simulated rainfall. Soil Tillage Res 21:209–223

    Article  Google Scholar 

  • Prosdocimi M, Cerda A, Tarolli P (2016a) Soil water erosion on Mediterranean vineyards: a review. Catena 141:1–21. doi:10.1016/j.catena.2016.02.010

    Article  Google Scholar 

  • Prosdocimi M, Jordan A, Tarolli P, Keesstra S, Novara A, Cerda A (2016b) The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci Total Environ 547:323–330. doi:10.1016/j.scitotenv.2015.12.076

    Article  Google Scholar 

  • Robichaud PR, Jordan P, Lewis SA, Ashmun LE, Covert SA, Brown RE (2013b) Evaluating the effectiveness of wood shred and agricultural straw mulches as a treatment to reduce post-wildfire hillslope erosion in southern British Columbia, Canada. Geomorph 197:21–33. doi:10.1016/j.geomorph.2013.04.024

    Article  Google Scholar 

  • Robichaud PR, Lewis SA, Wagenbrenner JW, Ashmun LE, Brown RE (2013c) Post-fire mulching for runoff and erosion mitigation part I: effectiveness at reducing hillslope erosion rates. Catena 105:75–92. doi:10.1016/j.catena.2012.11.015

    Article  Google Scholar 

  • Robichaud, PR, Ashmun LE, Foltz RB, Showers CG, Groenier JS, Kesler J, De Leo C, Moore M, (2013a) Production and aerial application of wood shreds as a post-fire hillslope erosion mitigation treatment. General Technical Report RMRS-GTR-307. Fort Collins, CO: U.S. Forest Service, Rocky Mountain Research Station. 31p.

  • Robichaud PR, Beyers JL, Neary DG, (2000) Evaluating the effectiveness of post fire rehabilitation treatments. Gen. Tech. Rep. RMRS-GTR-63. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 63 p.

  • Robichaud PR, Foltz RB, Showers ChG, Groenier JS,Sternke R,; Ashmun, LE, Brown RE, Jordan P, (2012) Evaluating the effectiveness of wood shreds on post-fire erosion. JFSP Research Project Reports. Paper 68.http://digitalcommons.unl.edu/jfspresearch/68

  • Rodrigo Comino J, Iserloh T, Morvan X, MalamIssa O, Naisse C, Keesstra SD, Cerda A, Prosdocimi M, Arnaez J, Lasanta T, Ramos MC, Marques MJ, Ruiz Colmenero M, Bienes R, Ruiz Sinoga JD, Seeger M, Ries JB (2016) Soil erosion processes in European vineyards: a qualitative comparison of rainfall simulation measurements in Germany, Spain and France. Hydrology 3(1):6. doi:10.3390/hydrology3010006

    Article  Google Scholar 

  • Rohith KG, Michelle LS, Saied M (2012) A comparison of nutrient losses from two simulated pastureland management scenarios. J Envi Monitoring 14(9):2421–2429. doi:10.1039/c2em30390f

    Article  Google Scholar 

  • Sadeghi SHR, Saeidi P (2010) Reliability of sediment rating curves for a deciduous forest watershed in Iran. Hydrol Sci J 55(5):821–831. doi:10.1080/02626667.2010.489797

    Article  Google Scholar 

  • Sadeghi SHR, Gholami L, Homaee M, Khaledi Darvishan A (2015a) Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth 6:445–455. doi:10.5194/se-6-445-2015

    Article  Google Scholar 

  • Sadeghi SHR, Gholami L, Sharifi E, Khaledi Darvishan A, Homaee M (2015b) Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth 6:1–8. doi:10.5194/se-6-1-2015

    Article  Google Scholar 

  • Shi ZH, Yue BJ, Wang L, Fang NF, Wang D, Wu FZ (2013) Effects of mulch cover rate on interrill erosion processes and the size selectivity of eroded sediment on steep slopes. Soil SciSoci Am J 77:257–267. doi:10.2136/sssaj2012.0273

    Article  Google Scholar 

  • Smets T, Poesen J, Bochet E (2008) Impact of plot length on the effectiveness of different soil-surface covers in reducing runoff and soil loss by water. J Soil Water Cons 32(6):654–677. doi:10.1177/0309133308101473

    Google Scholar 

  • Smets T, Poesen J, Fullen MA, Booth CA (2007) Effectiveness of palm and simulated geotextiles in reducing run-off and interrill erosion on medium and steep slopes. Soil Use Manage 23(3):306–316. doi:10.1111/j.1475-2743.2007.00098.x

  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocka J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 1:665–685. doi:10.5194/soil-1-665-2015

    Article  Google Scholar 

  • Wang PK, Pruppacher HR (1977) Acceleration to terminal velocity of cloud and raindrops. J Appl Meteorol 16:275–280. doi:10.1175/1520-0450(1977)016<0275:ATTVOC>2.0.CO;2

    Article  Google Scholar 

  • Yanosek KA, Foltz RB, Dooley JH (2006) Performance assessment of wood strand erosion control materials among varying slopes, soil textures, and cover amounts. J Soil Water Cons 61(2):45–50. doi:10.1016/j.ecoleng.2013.12.005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Gholami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, L., Khaledi Darvishan, A. & Kavian, A. Wood chips as soil conservation in field conditions. Arab J Geosci 9, 729 (2016). https://doi.org/10.1007/s12517-016-2731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2731-0

Keywords

Navigation