Skip to main content
Log in

An alternative approach to the fermentation of sweet sorghum juice into biopolymer of poly-β-hydroxyalkanoates (PHAs) by newly isolated, Bacillus aryabhattai PKV01

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This work revealed for the first time the possible use of a newly isolated Bacillus aryabhattai PKV01 for poly-β-hydroxyalkanoates (PHAs) production from fermentative sweet sorghum juice. Its growth and PHA production were investigated under different pH and nitrogen sources. Medium composition was optimized using statistical tools. The highest biomass and PHA content were reached at pH 6.5 with the use of urea. Plackett-Burman design was then applied to test the relative importance of medium components and process variables on cell growth and PHA production. Cell growth and PHAs production were affected by total sugar and urea and were subjected to optimize the sorghum juice medium using response surface methodology (RSM) via central composite design (CCD). The predicted optimal culture composition was achieved. Maximum dry cell weight and PHAs were obtained using a flask and almost double the amount was achieved using a bioreactor. After PHA recovery, the structure and thermal properties were characterised and revealed to be similar to the standard of poly-β-hydroxybutyrate (PHB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. J. and E. A. Dawes (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450–472.

    CAS  Google Scholar 

  2. Philip, S., T. Keshavarz, and I. Roy (2007) Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82: 233–247.

    Article  CAS  Google Scholar 

  3. Choi, J. and S. Y. Lee (1999) Factors affecting the economics of polyhydroxyalkaonoate production by bacterial fermentation. Appl. Microbiol. Biotechnol. 51: 13–21.

    Article  CAS  Google Scholar 

  4. Halami, P. M. (2007) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J. Microbiol. Biotechnol. 24: 805–812.

    Article  Google Scholar 

  5. Ramadas, N. V., S. K. Singh, C. R. Soccol, and A. Pandey (2009) Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Braz. Arch. Biol. Technol. 52: 17–23.

    Article  CAS  Google Scholar 

  6. Santimano, M. C., N. N. Prabhu, and S. Garg (2009) PHA production using low-cost agro-industrial wastes by Bacillus sp. strain COL1/A6. Res. J. Microbiol. 4: 89–96.

    Article  CAS  Google Scholar 

  7. Ishizaki, A., K. Tanaka, and N. Taga (2001) Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl. Microbiol. Biotechnol. 57: 6–12.

    Article  CAS  Google Scholar 

  8. Gouda, M. K., A. E. Swellam, and S. H. Omar (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquour as sole carbon and nitrogen sources. Microbiol. Res. 156: 201–207.

    Article  CAS  Google Scholar 

  9. Kulpreecha, S., A. Boonruangthavorn, B. Meksiriporn, and N. Thongchul (2009) Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J. Biosci. Bioeng. 107: 240–245.

    Article  CAS  Google Scholar 

  10. Kim, P., J. -H. Kim, and D. -K. Oh (2003) Improvement in cell yield of Methylobacterium sp. by reducing the inhibition of medium components for poly-β-hydroxybutyrate production. World J. Microbiol. Biotechnol. 19: 357–361.

    Article  CAS  Google Scholar 

  11. Mokhtari-Hosseini, Z. B., E. Vasheghani-Farahani, A. Heidarzadeh- Vazifekhoran, S. A. Shojaosadati, R. Karimzadeh, and K. K. Darani (2009) Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour. Technol. 100: 2436–2443.

    Article  CAS  Google Scholar 

  12. Yezza, A., A. Halasz, W. Levadoux, and J. Hawari (2007) Production of poly-β-hydroxybutyrate (PHB) by Alcaligenes latus from maple sap. Appl. Microbiol. Biotechnol. 77: 269–274.

    Article  CAS  Google Scholar 

  13. Tanamool, V., T. Imai, P. Danvirutai, and P. Kaewkannetra (2011) Biosynthesis of poly hydroxylalkanoate (PHA) by Hydrogenophaga sp. isolated from soil environments during batch fermentation. J. Life Sci. 5:1003–1012.

    CAS  Google Scholar 

  14. Suwannasing, W., S. Mooamart, and P. Keawkannetra (2011) Yields of Polyhydroxyalkanoates (PHAs) during batch fermentation of sugar cane juice by Alcaligenes latus and Alcaligenes eutrophus. J. Life Scien. 5: 960–966.

    CAS  Google Scholar 

  15. Almodares, A. and M. R. Hadi (2009) Production of bioethanol from sweet sorghum: A review. J. Agricult. Res. 4: 772–780.

    Google Scholar 

  16. Mamma, D., P. Christakopoulos, D. Koullas, D. Kekos, B. J. Macris, and E. Koukios (1995) An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass and Bioenergy 8: 99–103.

    Article  CAS  Google Scholar 

  17. Sipos, B., J. Reczey, Z. Somorai, Z. Kadar, D. Dienes, and K. Reczey (2009) Sweet sorghum as feedstock for ethanol production: Enzymatic hydrolysis of steam-pretreated bagasse. Appl. Biochem. Biotechnol. 153: 151–162.

    Article  CAS  Google Scholar 

  18. Laopaiboon, L., S. Nuanpeng, P. Srinophakun, P. Klanrit, and P. Laopaiboon (2009) Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresource Technol. 100: 4176–4182.

    Article  CAS  Google Scholar 

  19. Antonopoulou, G., H. N. Gavala, I. V. Skiadas, K. Angelopoulos, and G. Lyberatos (2008) Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour. Technol. 99:110–119.

    Article  CAS  Google Scholar 

  20. Hetényi, K., K. Gál, Á. Németh, and B. Sevella (2010) Use of sweet sorghum juice for lactic acid fermentation: Preliminary steps in a process optimization. J. Chem. Technol. Biotechnol. 85: 872–877.

    Article  Google Scholar 

  21. Liang, Y., N. Sarkany, Y. Cui, J. Yesuf, J. Trushenski, and J. W. Blackburn (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour. Technol. 101: 3623–3627.

    Article  CAS  Google Scholar 

  22. Kaewkannetra, P., P. Tanonkeo, V. Tanamool, and T. Imai (2008) Biorefinery of squeeze sweet sorghum juice into value added product of biopolymer. J. Biotechnol. 136: 412.

    Article  Google Scholar 

  23. Spiekermann, P., B. H. A. Rehm, R. Kalscheuer, D. Baumeister, and A. Steinbüchel (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 171: 73–80.

    Article  CAS  Google Scholar 

  24. Tanamool, V. and P. Kaewkannetra (2011) The Direct screening of potential polyhydroxylalkanoates (PHAs) bacterial from soil environment using sweet sorghum as a sole carbon source. In The World Congress on Engineering and Technology (CET2011): Proceeding in The World Congress on Engineering and Technology (CET2011). Oct 28–Nov 2. Shanghai, China.

    Google Scholar 

  25. Valappil, S. P., D. Peurusm, G. J. Langley, J. M. Herniman, A. R. Boccaccini, C. Bucke and I. Roy (2007) Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. J. Biotechnol. 127: 475–487.

    Article  CAS  Google Scholar 

  26. Singh, M., S. K. S. Patel, and V. C. Kalia (2009) Bacillus subtilis as potential producerfor polyhydroxyalkanoates. Microbial. Cell Factories 8: 1–11.

    Article  Google Scholar 

  27. Grothe, E., M. Moo-Young, and Y. Chisti (1999) Fermentation optimization for the production of poly [beta]-hydroxybutyric acid) microbial thermoplastic. Enz. Microbial. Technol. 25:132–141.

    Article  CAS  Google Scholar 

  28. Khanna, S. and A. K. Srivastava (2005) Statistical media optimization studies for growth and PHB production by Ralstoniaeutropha. Proc. Biochem. 40: 2173–2182.

    Article  CAS  Google Scholar 

  29. Law, J. H. and R. A. Slepecky (1961) Assay of poly-beta-hydroxybutyric acid. J. Bacteriol. 82: 33–36.

    CAS  Google Scholar 

  30. Yüksekdağ, Z. N., B. Aslm, Y. Beyatl, and N. Mercan (2004) Effect of carbon and nitrogen sources and incubation times on poly-beta-hydroxybutyrate (PHB) synthesis by Bacillus subtilis 25 and Bacillus megaterium 12. Afr. J. Biotechnol. 3: 63–66.

    Google Scholar 

  31. Palleroni, N. J. and A. V. Palleroni (1978) Alcaligenes latus, a new species of hydrogen-utilizing bacteria. Internat. J. Syst. Bacteriol. 28: 416–424.

    Article  Google Scholar 

  32. Nakata, H. M. (1963) Effect of pH on Intermediates produced during growth and sporulation of Bacillus cereus. J. Bacteriol. 86: 577–581.

    CAS  Google Scholar 

  33. Kominek, L. A. and H. O. Halvorson (1965) Metabolism of polybeta-hydroxybutyrate and acetoin in Bacillus cereus. J. Bacteriol. 90: 1251–1259.

    CAS  Google Scholar 

  34. RamKumar Pandian, S., V. Deepak, K. Kalishwaralal, N. Rameshkumar, M. Jeyaraj, and S. Gurunathan (2010) Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresou. Technol. 101: 705–711.

    Article  CAS  Google Scholar 

  35. Yilmaz, M., H. Soran, and Y. Beyatli (2005) Determination of poly-β-hydroxybutyrate (PHB) production by some Bacillus spp. World J. Microbiol. Biotechnol. 21: 565–566.

    Article  CAS  Google Scholar 

  36. Wu, Q., H. Huang, G. H. Hu, J. Chen, K. P. Ho, and G. Q. Chen (2001) Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie Van Leeuwenhoek 80: 111–118.

    Article  CAS  Google Scholar 

  37. Thirumala, M., S. Reddy, and S. Mahmood (2010) Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge. J. Indus. Microbiol. Biotechnol. 37: 271–278.

    Article  CAS  Google Scholar 

  38. Faccin, D. J. L., I. Martins, N. S. M. Cardozo, R. Rech, M. A. Z. Ayub, T. L. M. Alves, R. Gambetta, and A. Resende Secchi (2009) Optimization of C:N ratio and minimal initial carbon source for poly(3-hydroxybutyrate) production by Bacillus megaterium. J. Chem. Technol. Biotechnol. 84: 1756–1761.

    Article  CAS  Google Scholar 

  39. Sindhu, R., B. Ammu, P. Binod, S. K. Deepthi, K. B. Ramachandran, C. R. Soccol, and A. Pandey (2011) Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Braz. Arch. Biol. Technol. 54: 783–794.

    Article  CAS  Google Scholar 

  40. Jiang, Y., X. Song, L. Gong, P. Li, C. Dai, and W. Shao (2008) High poly(β-hydroxybutyrate) production by Pseudomonas fluorescens A2a5 from inexpensive substrates. Enz. Microbial. Technol. 42: 167–172.

    Article  CAS  Google Scholar 

  41. Oliveira, F. C., M. L. Dias, L. R. Castilho, and D. M. G. Freire (2007) Characterization of poly(3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation. Bioresour. Technol. 98: 633–638.

    Article  CAS  Google Scholar 

  42. Doi, Y., M. Kunioka, Y. Nakamura, and K. Soga (1986) Nuclear magnetic resonance studies on poly(β-hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16. Macromol. 19: 2860–2864.

    Article  CAS  Google Scholar 

  43. Massoud, M. I. and M. A. Abd El-Razek (2011) Suitability of Sorghum bicolor L. stalks and grains for bioproduction of ethanol. Annal. Agricul. Sci. 56: 83–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pakawadee Kaewkannetra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanamool, V., Imai, T., Danvirutai, P. et al. An alternative approach to the fermentation of sweet sorghum juice into biopolymer of poly-β-hydroxyalkanoates (PHAs) by newly isolated, Bacillus aryabhattai PKV01. Biotechnol Bioproc E 18, 65–74 (2013). https://doi.org/10.1007/s12257-012-0315-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0315-8

Keywords

Navigation