Skip to main content
Log in

Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL 1

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The characterization of bacterial enzymatic pathways of phenol metabolism is important to better understand phenol biodegradation. Phenol hydroxylase is the first enzyme involved in the oxidative metabolism of phenol, followed by further degradation via either meta- or ortho-pathways. In this study, the first known instance of phenol degradation via the meta-pathway by a member of the genus Acinetobacter (Acinetobacter sp. strain AQ5NOL 1) is reported. Phenol hydroxylase converts phenol to catechol, which is then converted via the meta-pathway to 2-hydroxymuconic semialdehyde by the catechol 2,3-dioxygenase enzyme. Phenol hydroxylase extracted from strain AQ5NOL 1 was fully purified using DEAE-Sepharose®, DEAE-Sephadex®, Q-Sepharose® and Zorbax® Bioseries GF-250 gel filtration and was demonstrated by SDS-PAGE to have a molecular weight of 50 kDa. The phenol hydroxylase was purified to about 210.51 fold. The optimum pH and temperature for enzyme activities are 20 °C and 7–7.5, respectively. The apparent K m and V max values of phenol hydroxylase with phenol as the substrate were 13.4 µM and 2.5 µmol min−1 mg−1, respectively. The enzyme was stable at −20 °C for 36 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams D, Ribbons DW (1998) The metabolism of aromatic ring fission products by baciluus stearothermophilus IC3. J Gen Microbiol 134:3179–3185

    Google Scholar 

  • Ahmad SA, Shamaan NA, Arif NM, Shukor MYA, Syed MA (2011) Identification and characterization of a phenol degrading Acinetobacter sp. strain AQ5NOL 1. Aust J Basic Appl Sci 5:1035–1045

    CAS  Google Scholar 

  • Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MYA, Syed MA (2012) Enhancement of biodegradation of phenol by immobilized cells of Acinetobacter sp. strain AQ5NOL 1. World J Microbiol Biotech 28:347–352

    Article  CAS  Google Scholar 

  • Ahmad SA, Shukor MY, Shamaan NA, Rahman NAA, Dahalan FA, Khalil KA, Syed MA (2015) Effects of pesticides and respiratory inhibitors on phenol degradation by Acinetobacter sp. strain AQ5NOL 1 immobilized in gellan gum. J Pure Appl Microbiol 9:489–495

    Google Scholar 

  • Arif NM, Ahmad SA, Syed MA, Shukor MY (2013) Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol 53:9–19

    Article  CAS  Google Scholar 

  • Basha KM, Rajendran A, Thangavelu V (2010) Recent advances in the biodegradation of phenol: a review. Asian J Exp Biol Sci 1:219–234

    CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252

    Article  CAS  Google Scholar 

  • Briganti F, Pessione E, Giunta C, Scozzafava A (1997) Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from phenol degrading Acinetobacter radioresistens. FEBS Lett 416:61–64

    Article  CAS  Google Scholar 

  • Carvalho MB, Martins I, Leitão MC, Garcia H, Rodrigues C, San Romão V, McLellan I, Hursthouse A, Silva Pereira C (2009) Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J Ind Microbiol Biotechnol 36:1249–1256

    Article  CAS  Google Scholar 

  • Cassidy MB, Mullineers H, Lee H, Trevors JT (1997) Mineralization of pentachlorophenol in a contaminated soil by Pseudomonassp UG30 cells encapsulated in κ-carrageenan. J Ind Microbiol Biotechnol 19:43–48

    Article  CAS  Google Scholar 

  • Chakraborty S, Bhattacharya T, Patel TN, Tiwari KK (2010) Biodegradation of phenol by native microorganisms isolated from coke processing wastewater. J Environ Biol 31:293–296

    CAS  Google Scholar 

  • Divari S, Valetti F, Caposia P, Pessione E, Cavaletto M, Griva E, Gribaudo G, Gilardi G, Giunta G (2003) The oxygenase component of phenol hydroxylase from Acinetobacter radioresistens S13. Eur J Biochem 270:2244–2253

    Article  CAS  Google Scholar 

  • Dong X, Hong Q, He L, Jiang X, Li S (2008) Characterization of phenol-degrading bacterial strains isolated from natural soil. Int Biodeterior Biodeg 62:257–262

    Article  CAS  Google Scholar 

  • El-Haleem D, Beshay U, Abdelhamid A, Moawad H, Zaki S (2003) Effect of mixed nitroghen sources on biodegradtion of phenol by immobilized Acinetobacter: sp strain W-17. Afr J Biotechnol 2:8–12

    Article  Google Scholar 

  • Etoumi A, El Musrati I, El Gammoudi B, El Behlil M (2008) The reduction of wax precipitation in waxy crude oils by Pseudomonas species. J Ind Microbiol Biotechnol 35:1241–1245

    Article  CAS  Google Scholar 

  • Farrell A, Quilty B (2002) Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J Ind Microbiol Biotechnol 28:316–324

    Article  CAS  Google Scholar 

  • González G, Herrera G, García T, Peña M (2001) Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Biores Technol 80:137–142

    Article  Google Scholar 

  • Hannaford AM, Kuek C (1999) Aerobic batch degradation of phenol using immobilized Pseudomonas putida. J Ind Microbiol Biotechnol 22:121–126

    Article  CAS  Google Scholar 

  • Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46:797–807

    Article  CAS  Google Scholar 

  • Hori TSF, Avilez IM, Inoue LK, Moraes G (2006) Metabolical changes induced by chronic phenol exposure in matrinxã Brycon cephalus (Teleostei: Characidae) juveniles. Comp Biochem Physiol Part C 143:67–72

    Article  Google Scholar 

  • Jiang HL, Tay JH, Tay STL (2004) Changes in structure, activity and metabolism of erobic granules as a microbial response to high phenol loading. Appl Microbiol Biotechnol 63:602–608

    Article  CAS  Google Scholar 

  • Jiang HL, Tay STL, Maszenan AM, Tay JH (2006) Physiol traits bacterial strains isolated phenol degrading aerobic granules. FEMS Microbiol Ecol 57:182–191

    Article  CAS  Google Scholar 

  • Kagle J, Hay AG (2006) Phenylacetylene reversibly inhibits the phenol hydroxylase of Pseudomonas sp. CF600 at high concentrations but is oxidized at lower concentrations. Appl Microbiol Biotechnol 72:306–315

    Article  CAS  Google Scholar 

  • Kirchner U, Westphal AH, Muller R, Berkel WJHV (2003) Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual roel for FAD. J Biol Chem 278:47545–47553

    Article  CAS  Google Scholar 

  • Muller RH, Babel W (1996) Growth rate-dependent expression of phenolassimilation pathways in Alcaligenes eutrophus JMP 134- the influence of formate as an auxiliary energy sources on phenol conversion characteristics. Appl Microbiol Biotechnol 46:156–162

    Article  Google Scholar 

  • Nawawi NM, Ahmad SA, Shukor MY, Syed MA, Khalil KA, Ab Rahman NA, Dahalan FA, Ibrahim AL (2016) Statistical optimization for improvement of phenol degradation by Rhodococcus sp. NAM 81. J Envion Biol 37:443–451

    Google Scholar 

  • Norazah MN, Jayasree N, Ahmad SA, Shukor MY, Abdul Latif I (2015) Disrupting Rhodococcus sp: a competent method for genomics and proteomics. J Chem Pharm Sci 8:336–341

    Google Scholar 

  • Paller G, Hommel RK, Kleber HP (1995) Phenol degradation by Acinetobacter calcoaceticus NCIB 8250. J Basic Microbiol 35:325–335

    Article  CAS  Google Scholar 

  • Saa L, Jaureguibeitia A, Largo E, Llama MJ, Serra JL (2009) Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 86:201–211

    Article  Google Scholar 

  • Salleh AB, Ghazali FM, Rahman RNZA, Basri M (2003) Bioremediation of petroleum hydrocarbon pollution. Afr J Biotechnol 2:411–425

    CAS  Google Scholar 

  • Scopes RK (1998) Protein purification, principles and practice. Springer-Verlag, New York

    Google Scholar 

  • Sharma A, Thakur IS, Dureja P (2009) Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation 20:643–650

    Article  CAS  Google Scholar 

  • Straube G (1987) Phenol hydroxylase from Rhodococcus sp. P1. J Basic Microbiol 27:229–232

    Article  CAS  Google Scholar 

  • Suhaila YN, Rosfarizan M, Ahmad SA, Latif IA, Ariff AB (2013) Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M. J Environ Biol 34:635–643

    CAS  Google Scholar 

  • Tsai SC, Tsai LD, Li YK (2005) An isolated candida albicans TL3 capable of degrading phenol at large concentration. Biosci Biotechnol Biochem 69:2358–2367

    Article  CAS  Google Scholar 

  • Tuan NN, Hsieh HC, Lin YW, Huang SY (2011) Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Biores Technol 102:4232–4240

    Article  Google Scholar 

  • van Schie PM, Young LY (2000) Biodegradation of phenol mechanisms and applications. Bioremed J 4:1–18

    Article  Google Scholar 

  • Veenagayathri K, Vasudevan N (2011) Ortho and mete cleavage dioxygenase detected during the degradation of phenolic compounds by a moderately halophilic bacterial consortium. Int Res J Microbiol 2:406–414

    Google Scholar 

  • Viggor S, Heinaru E, Kuennapas A, Heinaru A (2008) Evaluation of different phenol hydroxylase-possessing phenol-degrading pseudomonas by kinetic parameters. Biodegradation 19:759–769

    Article  CAS  Google Scholar 

  • Wang Y, Tian Y, Han B, Zhao HB, Bi JN, Cai BL (2007) Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J Environ Sci 19:222–225

    Article  CAS  Google Scholar 

  • Yang CF, Lee CM (2007) Enrichment, isolation, and characterization of phenol-degrading Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6. Int Biodeterior Biodeg 59:206–210

    Article  CAS  Google Scholar 

  • Yemendzhiev H, Gerginova M, Krastanov A, Stoilova I, Alexieva Z (2008) Growth of Trametes versicolor on phenol. J Ind Microbiol Biotechnol 35:1309–1312

    Article  CAS  Google Scholar 

  • Yotova L, Tzibranska I, Tileva F, Markx GH, Georgieva N (2009) Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporon cutaneum cells. J Ind Microbiol Biotechnol 36:367–372

    Article  CAS  Google Scholar 

  • Zaki S (2006) Detection of meta- and ortho-cleavage dioxygenases in bacterial phenol-degraders. J Appl Sci Environ Manag 10:75–81

    Google Scholar 

  • Zhu C, Zhang L, Zhao L (2008) Molecular cloning, genetic organization of gene cluster encoding phenol hydroxylase and catechol 2,3-dioxygenase in Alcaligenes faecalis IS-46. World J Microbiol Biotechnol 24:1687–1695

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Grant Scheme (RUGS) 2009, Universiti Putra Malaysia (Vote No. 91851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aqlima Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.A., Shamaan, N.A., Syed, M.A. et al. Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL 1. Rend. Fis. Acc. Lincei 28, 1–9 (2017). https://doi.org/10.1007/s12210-016-0554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0554-2

Keywords

Navigation