Skip to main content
Log in

Plasma Endothelin-1 as Screening Marker for Cerebral Vasospasm After Subarachnoid Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cerebral vasospasm complicating subarachnoid hemorrhage causes ischemic stroke and worsens the neurological outcome. The potential role of endothelin-1 in vasospasm pathogenesis may provide therapeutic opportunities. A recent meta-analysis however, did not support the use of endothelin antagonists. Apart from clinical assessment, transcranial Doppler and interval angiography, there are no sensitive screening markers for evolving vasospasm. We investigate the ability of serial measurement of endothelin-1 to predict the development of vasospasm following subarachnoid hemorrhage.

Methods

Endothelin-1 levels in cerebrospinal fluid and blood were measured daily in 20 patients admitted to the ICU with subarachnoid hemorrhage from days 1 to 10 following the inception bleed. In addition to clinical assessment, patients had daily transcranial Doppler. Digital subtraction angiography was performed on the suspicion of vasospasm based upon clinical or transcranial Doppler assessment. Neuron-specific enolase and SB100 were measured in blood as comparative biomarkers of neurological injury.

Results

Mean plasma endothelin-1 on day 5, was 4.2 mcg/L (CI 3.1–5.8) in patients with vasospasm compared to 2.5 mcg/L (CI 1.5–4.0) in those without vasospasm (P = 0.047). There were no time-related differences in cerebrospinal fluid endothelin-1, plasma NSE, or SB100 for patients with and without vasospasm.

Conclusions

In patients with subarachnoid hemorrhage and vasospasm, endothelin-1 is significantly higher in plasma than in CSF on day 5. Neither NSE nor SB100 is associated with the development of vasospasm. Measurement of serial plasma endothelin-1 concentration is a potential screening marker of vasospasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kassell NF, Torner JC, Jane JA, Haley EC Jr, Adams HP. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 2: Surgical results. J Neurosurg. 1990;73:37–47.

    Article  CAS  PubMed  Google Scholar 

  2. Harrod CG, Bendok BR, Batjer HH. Prediction of cerebral vasospasm in patients presenting with aneurysmal subarachnoid hemorrhage: a review. Neurosurgery. 2005;56:633–54 discussion-54.

    Article  PubMed  Google Scholar 

  3. Klimo P Jr, Schmidt RH. Computed tomography grading schemes used to predict cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a historical review. Neurosurg Focus. 2006;21:E5.

    Article  PubMed  Google Scholar 

  4. Suzuki H, Sato S, Suzuki Y, Takekoshi K, Ishihara N, Shimoda S. Increased endothelin concentration in CSF from patients with subarachnoid hemorrhage. Acta Neurol Scand. 1990;81:553–4.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki H, Sato S, Suzuki Y, et al. Endothelin immunoreactivity in cerebrospinal fluid of patients with subarachnoid haemorrhage. Ann Med. 1990;22:233–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ehrenreich H, Lange M, Near KA, et al. Long term monitoring of immunoreactive endothelin-1 and endothelin-3 in ventricular cerebrospinal fluid, plasma, and 24-h urine of patients with subarachnoid hemorrhage. Res Exp Med (Berl). 1992;192:257–68.

    Article  CAS  Google Scholar 

  7. Kirkby NS, Hadoke PW, Bagnall AJ, Webb DJ. The endothelin system as a therapeutic target in cardiovascular disease: great expectations or bleak house? Br J Pharmacol. 2008;153:1105–19.

    Article  CAS  PubMed  Google Scholar 

  8. Macdonald RL, Kassell NF, Mayer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39:3015–21.

    Article  CAS  PubMed  Google Scholar 

  9. Macdonald RL, Higashida RT, Keller E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011;10:618–25.

    Article  CAS  PubMed  Google Scholar 

  10. Macdonald RL, Higashida RT, Keller E, et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke. 2012;43:1463–9.

    Article  CAS  PubMed  Google Scholar 

  11. Mascia L, Fedorko L, Stewart DJ, et al. Temporal relationship between endothelin-1 concentrations and cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2001;32:1185–90.

    Article  CAS  PubMed  Google Scholar 

  12. Menon DK, Day D, Kuc RE, Downie AJ, Chatfield DA, Davenport AP. Arteriojugular endothelin-1 gradients in aneurysmal subarachnoid haemorrhage. Clin Sci (Lond). 2002;103(Suppl 48):399S–403S.

    CAS  Google Scholar 

  13. Kastner S, Oertel MF, Scharbrodt W, Krause M, Boker DK, Deinsberger W. Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurysmal SAH. Acta Neurochir (Wien). 2005;147:1271–9 discussion 9.

    Article  CAS  Google Scholar 

  14. Kessler IM, Pacheco YG, Lozzi SP, de Araujo AS, Jr., Onishi FJ, de Mello PA. Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Surg Neurol 2005;64 Suppl 1:S1:2-5; discussion S1:5.

  15. Kraus GE, Bucholz RD, Yoon KW, Knuepfer MM, Smith KR Jr. Cerebrospinal fluid endothelin-1 and endothelin-3 levels in normal and neurosurgical patients: a clinical study and literature review. Surg Neurol. 1991;35:20–9.

    Article  CAS  PubMed  Google Scholar 

  16. Seifert V, Loffler BM, Zimmermann M, Roux S, Stolke D. Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg. 1995;82:55–62.

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki K, Meguro K, Sakurai T, Saitoh Y, Takeuchi S, Nose T. Endothelin-1 concentration increases in the cerebrospinal fluid in cerebral vasospasm caused by subarachnoid hemorrhage. Surg Neurol. 2000;53:131–5.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki R, Masaoka H, Hirata Y, Marumo F, Isotani E, Hirakawa K. The role of endothelin-1 in the origin of cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 1992;77:96–100.

    Article  CAS  PubMed  Google Scholar 

  19. Juvela S. Plasma endothelin concentrations after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;92:390–400.

    Article  CAS  PubMed  Google Scholar 

  20. Juvela S. Plasma endothelin and big endothelin concentrations and serum endothelin-converting enzyme activity following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2002;97:1287–93.

    Article  CAS  PubMed  Google Scholar 

  21. Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  22. de Kruijk JR, Leffers P, Menheere PP, Meerhoff S, Twijnstra A. S-100B and neuron-specific enolase in serum of mild traumatic brain injury patients. A comparison with health controls. Acta Neurol Scand. 2001;103:175–9.

    Article  PubMed  Google Scholar 

  23. Martens P. Serum neuron-specific enolase as a prognostic marker for irreversible brain damage in comatose cardiac arrest survivors. Acad Emerg Med. 1996;3:126–31.

    Article  CAS  PubMed  Google Scholar 

  24. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.

    Article  CAS  PubMed  Google Scholar 

  25. Lindegaard KF, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18:1025–30.

    Article  CAS  PubMed  Google Scholar 

  26. Mills JN, Mehta V, Russin J, Amar AP, Rajamohan A, Mack WJ. Advanced imaging modalities in the detection of cerebral vasospasm. Neurol Res Int. 2013;2013:415960.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lad SP, Hegen H, Gupta G, Deisenhammer F, Steinberg GK. Proteomic biomarker discovery in cerebrospinal fluid for cerebral vasospasm following subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2012;21:30–41.

    Article  PubMed  Google Scholar 

  28. Kessler IM, Mounayer C, Piotin M, Spelle L, Vanzin JR, Moret J. The use of balloon-expandable stents in the management of intracranial arterial diseases: a 5-year single-center experience. AJNR Am J Neuroradiol. 2005;26:2342–8.

    PubMed  Google Scholar 

  29. Suzuki K, Meguro K, Wada M, Fujita K, Nose T. Embolization of a ruptured aneurysm of the distal anterior inferior cerebellar artery: case report and review of the literature. Surg Neurol. 1999;51:509–12.

    Article  CAS  PubMed  Google Scholar 

  30. Oertel M, Schumacher U, McArthur DL, Kastner S, Boker DK. S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci. 2006;13:834–40.

    Article  CAS  PubMed  Google Scholar 

  31. Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke. 2006;37:2508–13.

    Article  CAS  PubMed  Google Scholar 

  32. Johnsson P, Lundqvist C, Lindgren A, Ferencz I, Alling C, Stahl E. Cerebral complications after cardiac surgery assessed by S-100 and NSE levels in blood. J Cardiothorac Vasc Anesth. 1995;9:694–9.

    Article  CAS  PubMed  Google Scholar 

  33. Aurell A, Rosengren LE, Karlsson B, Olsson JE, Zbornikova V, Haglid KG. Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke. 1991;22:1254–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to: Mr P. Jarret, Ms J. Stuart, Ms M. Lassig-Smith, Ms R. Deans, Ms T. Starr; research coordinators at the Intensive Care Department, Royal Brisbane and Womens’ Hospital, QLD, Australia, for their contribution with data collection and processing.

Conflict of interest

The authors report no conflict of interest within this study or the data derived from its results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bellapart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellapart, J., Jones, L., Bandeshe, H. et al. Plasma Endothelin-1 as Screening Marker for Cerebral Vasospasm After Subarachnoid Hemorrhage. Neurocrit Care 20, 77–83 (2014). https://doi.org/10.1007/s12028-013-9887-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9887-1

Keywords

Navigation