Skip to main content

Advertisement

Log in

Generation of Mouse and Human Induced Pluripotent Stem Cells (iPSC) from Primary Somatic Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cellular reprogramming consists of the conversion of differentiated cells into pluripotent cells; the so-called induced Pluripotent Stem Cells. iPSC are amenable to in vitro manipulation and, in theory, direct production of any differentiated cell type. Furthermore, iPSC can be obtained from sick individuals and subsequently used for disease modeling, drug discovery and regenerative treatments. iPSC production was first achieved by transducing, with the use of retroviral vectors, four specific transcription factors: Oct4, Klf4, Sox2 and c-Myc (OKSM), into primary cells in culture Takahashi and Yamanaka, (Cell 126(4):663–676, 2006). Many alternative protocols have since been proposed: repeated transfections of expression plasmids containing the four pluripotency-associated genes Okita et al. (Science 322(5903):949–953, 2008), lentiviral delivery of the four factors Sommer et al. (Stem Cells 27(3):543–549, 2009), Sendai virus delivery Fusaki et al. (Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 85(8):348–362, 2009), removal of the reprogramming vectors by ‘piggyBac’ transposition Woltjen et al. (Nature 458(7239):766–770, 2009); Kaji et al. (Nature 458(7239):771–775, 2009), Cre-recombinase excisable viruses Soldner et al. (Cell 136(5):964–977, 2009), episomal vectors Yu et al. (Science 324(5928):797–801, 2009), cell-penetrating reprogramming proteins Zhou et al. (Stem Cells 4(5):381–384, 2009), mammalian artificial chromosomes Hiratsuka et al. (PLoS One 6(10):e25961, 2011) synthetically modified mRNAs Warren et al. (Scientific Reports 2:657, 2012), miRNA Anokye-Danso et al. (Cell Stem Cell 8(4):376–388, 2009); however, although some of these methods are commercially available, in general they still need to attain the reproducibility and reprogramming efficiency required for routine applications Mochiduki and Okita (Biotechnol Journal 7(6):789–797, 2012). Herein we explain, in four detailed protocols, the isolation of mouse and human somatic cells and their reprogramming into iPSC. All-encompassing instructions, not previously published in a single document, are provided for mouse and human iPSC colony isolation and derivation. Although mouse and human iPSC share similarities in the cellular reprogramming process and culture, both cell types need to be handled differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  2. Okita, K., Nakagawa, M., Hyenjong, H., et al. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.

    Article  CAS  PubMed  Google Scholar 

  3. Sommer, C. A., Stadtfeld, M., Murphy, G. J., et al. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells, 27(3), 543–549.

    Article  CAS  PubMed  Google Scholar 

  4. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., & Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 85(8), 348–362.

    Article  CAS  PubMed  Google Scholar 

  5. Woltjen, K., Michael, I. P., Mohseni, P., et al. (2009). PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.

    Article  CAS  PubMed  Google Scholar 

  6. Kaji, K., Norrby, K., Paca, A., et al. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.

    Article  CAS  PubMed  Google Scholar 

  7. Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, H., Wu, S., & Joo, J. Y. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Stem Cells, 4(5), 381–384.

    CAS  Google Scholar 

  10. Hiratsuka, M., Uno, N., Ueda, K., et al. (2011). Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS One, 6(10), e25961.

    Article  CAS  PubMed  Google Scholar 

  11. Warren, L., Ni, Y., Wang, J., & Guo, X. (2012). Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Scientific Reports, 2, 657.

    Article  PubMed  Google Scholar 

  12. Anokye-Danso, F., Trivedi, C. M., Juhr, D., et al. (2009). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.

    Article  Google Scholar 

  13. Mochiduki, Y., & Okita, K. (2012). Methods for iPS cell generation for basic research and clinical applications. Biotechnol Journal, 7(6), 789–797.

    Article  CAS  Google Scholar 

  14. Maherali, N., & Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3(6), 595–605.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, J. B., Sebastiano, V., Wu, G., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–419.

    Article  CAS  PubMed  Google Scholar 

  16. Huangfu, D., Osafune, K., Maehr, R., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  17. Ware, C. B., Wang, L., Mecham, et al. (2009). Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell, 4(4), 359–369.

    Article  CAS  PubMed  Google Scholar 

  18. Shi, Y., Do, J. T., Desponts, C., et al. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6), 525–528.

    Article  CAS  PubMed  Google Scholar 

  19. Esteban, M. A., Wang, T., Qin, B., et al. (2009). Vitamin C enhances the generation of mouse.

  20. Zhao, Y., Yin, X., Qin, H., et al. (2008). Two supporting factors greatly improve the efficiency of human iPS cells generation. Cell Stem Cell, 3(5), 475–479.

    Article  CAS  PubMed  Google Scholar 

  21. Van den Boom, V., Kooistra, S. M., Boesjes, M., et al. (2007). UTF1 is a chromatin-associated protein involved in ES cell differentiation. The Journal of Cell Biology, 178(6), 913–924.

    Article  PubMed  Google Scholar 

  22. Pirrone, A., Hager, B., & Fleckman, P. (2005). Primary mouse keratinocyte culture. Methods in Molecular Biology, 289, 3–14.

    PubMed  Google Scholar 

  23. Lichti, U., Anders, J., & Yuspa, S. H. (2008). Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nature Protocols, 3(5), 799–810.

    Article  CAS  PubMed  Google Scholar 

  24. Schnabel, L. V., Abratte, C. M., Schimenti, J. C., et al. (2012). Genetic background affects induced pluripotent stem cell generation. Stem Cell Research & Therapy, 3(4), 30.

    Article  CAS  Google Scholar 

  25. Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2(12), 3081–3089.

    Article  CAS  PubMed  Google Scholar 

  26. Camarasa, M. V., Galvez, V. M., Brison, D. R., & Bachiller, D. (2012). Optimized protocol for derivation of human embryonic stem cell lines. Stem Cell Reviews and Reports, 8(3), 1011–1020.

    Article  CAS  PubMed  Google Scholar 

  27. Camarasa, M., Brison, D., Kimber, S. J., & Handyside, A. H. (2009). Naturally immortalised mouse embryonic fibroblast lines support human embryonic stem cell growth. Cloning and Stem Cells, 11(3), 453–462.

    Article  CAS  PubMed  Google Scholar 

  28. Swift, S., Lorens, J., Achacoso, P., & Nolan, G. P. (2001). Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293 T cell-based systems. Edited by John E.Coligan. Current Protocols in Immunology. Chapter 10, Unit 10.17C.

  29. Aasen, T., & Belmonte, J. C. (2010). Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protocols, 5(2), 371–382.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, X. J. (2001). Preparation of recombinant retroviruses. Methods in Molecular Medicine, 47, 171–190.

    CAS  PubMed  Google Scholar 

  31. Morita, S., Kojima, T., & Kitamura, T. (2000). Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy, 7(12), 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  32. Klee, M., Pallauf, K., Alcalá, S., et al. (2009). Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of endoplasmic reticular Bak. EMBO Journal, 28(12), 1757–1768.

    Article  CAS  PubMed  Google Scholar 

  33. Yu, S. S., Kim, J. M., & Kim, S. (2000). High efficiency retroviral vectors that contain no viral coding sequences. Gene Therapy, 7(9), 797–804.

    Article  CAS  PubMed  Google Scholar 

  34. Swift, S., Lorens, J., Achacoso, P., Nolan, G. P. (2001). Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293 T cell-based systems. Current Protocols in Immunology, Chapter 10, Unit 10.17C.

  35. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  36. Ohnuki, M., Takahashi, K., Yamanaka, S. (2009). Generation and characterization of human induced pluripotent stem cells. Current Protocols in Stem Cell Biology, Chapter 4, Unit 4A.2.

  37. Park, I. H., Lerou, P. H., Zhao, R., et al. (2008). Generation of human-induced pluripotent stem cells. Nature Protocols, 3(7), 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  38. Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: history, mechanisms, and applications. Genes & Development, 24(20), 2239–2263.

    Article  CAS  Google Scholar 

  39. Aasen, T., Raya, A., Barrero, M. J., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, X. Y., Li, W., Lv, Z., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461(7260), 86–90.

    Article  CAS  PubMed  Google Scholar 

  41. Martins-Taylor, K., & Xu, R. H. (2012). Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells, 30(1), 22–27.

    Article  CAS  PubMed  Google Scholar 

  42. Lund, R. J., Närvä, E., & Lahesmaa, R. (2012). Genetic and epigenetic stability of human pluripotent stem cells. Nature Reviews Genetics, 13(10), 732–744.

    Article  CAS  PubMed  Google Scholar 

  43. Nagy, A., Gertsenstein, M., Vintersten, K., Behringer, R. (2003). Manipulating the Mouse Embryo 3rd edition, Cold Spring Harbor Laboratory Press.

  44. Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  45. Bahnson, A. B., Dunigan, J. T., Baysal, B. E., et al. (1995). Centrifugal enhancement of retroviral mediated gene transfer. Journal of Virological Methods, 54(2–3), 131–143.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the MICINN-JDC and MICINN PLE2009-0091 and IPT-2011-1402-900000 grants. We are grateful to J.C. Izpisúa-Belmonte and T. Aasen from the Center of Regenerative Medicine in Barcelona (CRMB) for their help in establishing iPSC technology in our lab, as well as for the gift of human OKSM retroviral plasmids and Ecotropic Phoenix cells. We also thank S. Yamanaka for the gift of mouse OKSM retroviral plasmids, and M.V. Camarasa for technical advise on stem cell culture. We also thank the Balearic Islands University Institute for Biomedical Research (IUNICS) for the use of their facilities.

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bachiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzo, I.M., Fleischer, A. & Bachiller, D. Generation of Mouse and Human Induced Pluripotent Stem Cells (iPSC) from Primary Somatic Cells. Stem Cell Rev and Rep 9, 435–450 (2013). https://doi.org/10.1007/s12015-012-9412-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9412-5

Keywords

Navigation