Skip to main content
Log in

CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Interests associated with nanoparticles (NPs) are budding due to their toxicity to living species. The lethal effect of NPs depends on their nature, size, shape, and concentration. Present investigation reports that CuO NPs badly affected Brassica nigra seed germination and seedling growth parameters. However, variation in antioxidative activities and nonenzymatic oxidants is observed in plantlets. Culturing the leaf and stem explants on MS medium in presence of low concentration of CuO NPs (1–20 mg l−1) produces white thin roots with thick root hairs. These roots also show an increase in DPPH radical scavenging activity (up to 80 % at 10 mg l−1), total antioxidant, and reducing power potential (maximum in presence of 10 mg l−1 CuO NPs in the media). Nonenzymatic antioxidative molecules, phenolics and flavonoids, are observed elevated but NPs concentration dependent. We can conclude that CuO NPs can induce rooting from plant explants cultured on appropriate medium. These roots can be explored for the production of active chemical constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

DPPH:

2,2-Diphenyl-1-picryl hydrazyl

NPs:

Nanoparticles

TPC:

Total phenolic contents

TFC:

Total flavonoid content

TAC:

Total antioxidant capacity

TRP:

Total reducing power

References

  1. Nel, A., Xia, T., Ma¨dler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    Article  CAS  Google Scholar 

  2. Roco, M. C. (2005). Environmentally responsible development of nanotechnology. Environment. Science and Technology, 39, 106–112.

    Article  Google Scholar 

  3. Lin, B. S., Diao, S. Q., Li, C. H., Fang, L. J., Qiao, S. C., & Yu, M. (2004). Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Journal of Forest Research China, 15, 138–140.

    Article  CAS  Google Scholar 

  4. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., & Watanbe, F. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3, 3221–3227.

    Article  CAS  Google Scholar 

  5. Birbaum, K., Brogioli, R., Schellenberg, M., Martinoia, E., Stark, W. J., & Gunther, D. (2010). No evidence for cerium dioxide nanoparticle translocation in maize plants. Environment Science Technology, 44, 8718–8723.

    Article  CAS  Google Scholar 

  6. Cifuentes, Z., Custardoy, L., de la Fuente, J., Marquina, C., Ibarra, M. R., & Rubiales, D. (2010). Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. Journal of Nanobiotechnology, 8, 26.

    Article  Google Scholar 

  7. Sharma, P., Bhatt, D., Zaidi, M. G. H., Saradhi, P. P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167, 2225.

    Article  CAS  Google Scholar 

  8. Ushahra, J., Bhati-Kushwaha, H., & Malik, C. P. (2014). Biogenic nanoparticle-mediated augmentation of seed germination, growth, and antioxidant level of Eruca sativa mill. varieties. Applied Biochemistry and Biotechnology, 174, 729–738.

    Article  CAS  Google Scholar 

  9. Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of Air Waste Management Association, 55, 708–746.

    Article  CAS  Google Scholar 

  10. Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of Total Environment, 407, 1461–1468.

    Article  CAS  Google Scholar 

  11. Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environment Toxicology and Chemistry, 27, 1915–1921.

    Article  CAS  Google Scholar 

  12. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 43, 9473–9479.

    Article  CAS  Google Scholar 

  13. Shi, J., Abid, A. D., Kennedy, I. M., Hristova, K. R., & Silk, W. K. (2011). To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environmental Pollution, 159, 1277–1282.

    Article  CAS  Google Scholar 

  14. Kahru, A., & Dubourguier, H. C. (2010). From ecotoxicology to nanoecotoxicology. Toxicology, 269, 105–119.

    Article  CAS  Google Scholar 

  15. Ivask, A., Bondarenko, O., Jepihhina, N., & Kahru, A. (2010). Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Annals of Bioanalysis Chemistry, 398, 701–716.

    Article  CAS  Google Scholar 

  16. Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161–1208.

    Article  CAS  Google Scholar 

  17. Ahamed, M., Siddiqui, M. A., Akhtar, M. J., Ahmad, I., Pant, A. B., & Alhadlaq, H. A. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemistry Biophysics Research Communication, 396, 578–583.

    Article  CAS  Google Scholar 

  18. Rehman, R. U., Chaudhary, M. F., Khawar, K. M., Lu, G., Mannan, A., & Zia, M. (2014). In vitro propagation of Caralluma tuberculata and evaluation of antioxidant potential. Biologia, 69, 341–349.

    Article  CAS  Google Scholar 

  19. Haq, I. U., Ullah, N., Bibi, G., Kanwal, S., Ahmad, M. S., & Mirza, B. (2010). Antioxidant and cytotoxic activities and phytochemical analysis of euphorbia wallichii root extract and its fractions. Iranian Journal of Pharmaceutical Research, 11, 241–249.

    Google Scholar 

  20. Ali, A., Phull, A. R., Zia, M., Shah, A. M. A., Malik, R. N., & Haq, I. U. (2015). Phytotoxicity of river Chenab sediments: in vitro morphological and biochemical response of Brassica napus L. Environmental Nanotechnology Monitoring and Management, 4, 74–84.

    Article  Google Scholar 

  21. Fatima, F., Khan, K., Zia, M., Rehman, T. U., Mirza, B., & Haq, I. U. (2015). Extraction optimization of medicinally important metabolites from Datura innoxia mill: an in vitro biological and phytochemical investigation. BMC Comlementary and Alternative Medicine, 15, 376.

    Article  Google Scholar 

  22. Van Dongen, J. T., Ammerlaan, A. M. H., Wouterlood, M., Van Aelst, A. C. V., & Borstlap, A. C. (2003). Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients. Annals of Botany-London, 91, 729–737.

    Article  CAS  Google Scholar 

  23. Shen, C. X., Zhang, Q. F., Li, J., Bi, F. C., & Yao, N. (2010). Induction of programmed cell death in Arabidopsis and rice by single wall carbon nanotubes. American Journal of Botany, 97, 1–8.

    Article  Google Scholar 

  24. Munzuroglu, O., & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology, 43, 203–213.

    Article  CAS  Google Scholar 

  25. Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A., & Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environment Science and Technology, 40, 4374–4381.

    Article  CAS  Google Scholar 

  26. An, Y. J. (2006). Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere, 62, 1359–1365.

    Article  CAS  Google Scholar 

  27. Xu, J., Yang, L., Wang, Z., Dong, G., Huang, J., & Wang, Y. (2006). Toxicity of copper on rice growth and accumulation of copper in rice grain in copper-contaminated soil. Chemosphere, 62, 602–607.

    Article  CAS  Google Scholar 

  28. Lu, C. M., Zhang, C. Y., Wen, J. Q., Wu, G. R., & Tao, M. X. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–172.

    CAS  Google Scholar 

  29. Mahendra, S., Zhu, H., Colvin, V. L., & Alvarez, P. J. J. (2008). Quantum dot weathering results in microbial toxicity. Environment Science and Technology, 42, 9424–9430.

    Article  CAS  Google Scholar 

  30. Li, D., Lyon, D. Y., Li, Q., & Alvarez, P. J. J. (2008). Effect of natural organic matter on the antibacterial activity of a fullerene water suspension. Environmental Toxicology and Chemistry, 27, 1888–1894.

    Article  CAS  Google Scholar 

  31. Stone, V., Johnston, H., & Clift, M. J. (2007). Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Transactions on Nanobioscience, 6, 331–340.

    Article  Google Scholar 

  32. Ramirez-Prieto, M. T., Garcia-Rio, F., & Villamor, J. (2006). Role of oxidative stress in respiratory diseases and its monitoring. Medicina Clinica, 127, 386–396.

    Article  Google Scholar 

  33. Li, N., Hao, M., Phalen, R. F., Hinds, W. C., & Nel, A. E. (2003). Particulate air pollutants and asthma a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology, 109, 250–265.

    Article  CAS  Google Scholar 

  34. Chan, H. W., Liu, T., Verdile, G., Bishop, G., Haasl, R. J., Smith, M. A., Perry, G., Martins, R. N., & Atwood, C. S. (2008). Copper induces apoptosis of neuroblastoma cells via post-translational regulation of the expression of Bcl-2-family proteins and the tx mouse is a better model of hepatic than brain Cu toxicity. International Journal of Clinical Experimental Medicine, 1, 76–88.

    CAS  Google Scholar 

  35. Midander, K., Cronholm, P., Karlsson, H. L., Elihn, K., Moller, L., Leygraf, C., & Wallinder, I. O. (2009). Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small, 5, 389–399.

    Article  CAS  Google Scholar 

  36. Guo, B., Zebda, R., Drake, S. J., & Sayes, C. M. (2009). Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Part Fiber Toxicology, 6, 4.

    Article  Google Scholar 

  37. Bandara, J., Guasaquillo, I., Bowen, P., Soare, L., Jardim, W. F., & Kiwi, J. (2005). Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO evidence for a reductive–oxidative interfacial mechanism. Langmuir, 21, 8554–8559.

    Article  CAS  Google Scholar 

  38. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336.

    Article  CAS  Google Scholar 

  39. Niethammer, P., Grabher, C., Look, A. T., & Mitchison, T. J. (2009). A tissue scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 459, 996–999.

    Article  CAS  Google Scholar 

  40. Foreman, J., Demidchik, V., & Bothwell, J. H. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422, 442–446.

    Article  CAS  Google Scholar 

  41. Jones, M. A., Raymond, M. J., Yang, Z., & Smirnoff, N. (2007). NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. Journal of Experimental Botany, 58, 1261–1270.

    Article  CAS  Google Scholar 

  42. Vieira-Dos-Santos, C., & Rey, P. (2006). Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science, 11, 329–334.

    Article  CAS  Google Scholar 

  43. Monshausen, G. B., Bibikova, T. N., Messerli, M. A., Shi, C., & Gilroy, S. (2007). Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proceedings National Academy of Science USA, 104, 20996–21001.

    Article  CAS  Google Scholar 

  44. Dimpka, C. O., Jia, Z., McLean, J. E., David, W. B., Jixun, Z., & Anderson, A. J. (2012). Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Applied Environmental Microbiology, 78, 1404–1410.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Higher Education Commission Pakistan for provision of partial funding for the research work under Indigenous PhD Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, H., Ali, A. & Zia, M. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants. Appl Biochem Biotechnol 181, 365–378 (2017). https://doi.org/10.1007/s12010-016-2217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2217-2

Keywords

Navigation