Skip to main content
Log in

Identifying the Regulative Role of NF-κB Binding Sites Within Promoter Region of Human Matrix Metalloproteinase 9 (mmp-9) by TNF-α Induction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase 9 (MMP-9), a member of MMP family, is involved in many physiological processes, including cardiovascular disease (CVD). Tumor necrosis factor-α (TNF-α) is considered a cytokine with pleiotropic biological capabilities and leads to the process of CVD when TNF-α is abnormally released and stimulates MMP-9 expression and activation. In this study, we investigated the molecular mechanism of TNF-α-regulated MMP-9 expression. The experimental results confirm that TNF-α could upregulate MMP-9 expression in heart myoblast H9c2 cells of rat. To evaluate the MMP-9 regulation at transcriptional level, a DNA fragment of 2.2 kb (−2168/+18) of human mmp-9 promoter region was cloned and constructed in a vector of luciferase reporter gene. The 2.2-kb sequences were identified as having three candidate nuclear factor-κ B (NF-κB) binding sites: NF-κB I (−1418/−1409), NF-κB II (−626/−617), and NF-κB III (−353/−345). A series of reporter vectors with the mutated NF-κB sites of mmp-9 promoter sequences were constructed and transfected into H9c2 cells. The results show that the NF-κB II binding site (−626/−617) within the promoter region of mmp-9 plays a key role in upregulation of mmp-9 expression by TNF-α induction. In addition, we also first identified that the NF-κB I, similar to c-Rel, might be one of the NF-κB families to regulate mmp-9 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagase, H., & Woessner, J. F., Jr. (1999). Matrix metalloproteinases. The Journal of Biological Chemistry, 274, 21491–21494.

    Article  CAS  Google Scholar 

  2. Cho, A., & Reidy, M. A. (2002). Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circulation Research, 91, 845–851.

    Article  CAS  Google Scholar 

  3. Gutierrez-Fernandez, A., Inada, M., Balbin, M., Fueyo, A., Pitiot, A. S., Astudillo, A., et al. (2007). Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). The FASEB Journal, 21, 2580–2591.

    Article  CAS  Google Scholar 

  4. Miller, M. C., Manning, H. B., Jain, A., Troeberg, L., Dudhia, J., Essex, D., et al. (2009). Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis and Rheumatism, 60, 686–697.

    Article  CAS  Google Scholar 

  5. Schulz, R. (2007). Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annual Review of Pharmacology and Toxicology, 47, 211–242.

    Article  CAS  Google Scholar 

  6. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2, 161–174.

    Article  CAS  Google Scholar 

  7. Ray, A., Bal, B. S., & Ray, B. K. (2005). Transcriptional induction of matrix metalloproteinase-9 in the chondrocyte and synoviocyte cells is regulated via a novel mechanism: evidence for functional cooperation between serum amyloid A-activating factor-1 and AP-1. Journal of Immunology, 175, 4039–4048.

    CAS  Google Scholar 

  8. Kizaki, K., Ito, R., Okada, M., Yoshioka, K., Uchide, T., Temma, K., et al. (2006). Enhanced gene expression of myocardial matrix metalloproteinases 2 and 9 after acute treatment with doxorubicin in mice. Pharmacological Research, 53, 341–346.

    Article  CAS  Google Scholar 

  9. Yoon, Y. W., Kwon, H. M., Hwang, K. C., Choi, E. Y., Hong, B. K., Kim, D., et al. (2005). Upstream regulation of matrix metalloproteinase by EMMPRIN; extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque. Atherosclerosis, 180, 37–44.

    Article  CAS  Google Scholar 

  10. Pacher, P., Schulz, R., Liaudet, L., & Szabo, C. (2005). Nitrosative stress and pharmacological modulation of heart failure. Trends in Pharmacological Sciences, 26, 302–310.

    Article  CAS  Google Scholar 

  11. Yong, V. W., Power, C., Forsyth, P., & Edwards, D. R. (2001). Metalloproteinases in biology and pathology of the nervous system. Nature Reviews. Neuroscience, 2, 502–511.

    Article  CAS  Google Scholar 

  12. Liacini, A., Sylvester, J., Li, W. Q., & Zafarullah, M. (2005). Mithramycin downregulates proinflammatory cytokine-induced matrix metalloproteinase gene expression in articular chondrocytes. Arthritis Research & Therapy, 7, R777–R783.

    Article  CAS  Google Scholar 

  13. Quiding-Jarbrink, M., Smith, D. A., & Bancroft, G. J. (2001). Production of matrix metalloproteinases in response to mycobacterial infection. Infection and Immunity, 69, 5661–5670.

    Article  CAS  Google Scholar 

  14. Zhang, Y., McCluskey, K., Fujii, K., & Wahl, L. M. (1998). Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent and -independent mechanisms. Journal of Immunology, 161, 3071–3076.

    CAS  Google Scholar 

  15. Deschamps, A. M., & Spinale, F. G. (2006). Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. Cardiovascular Research, 69, 666–676.

    Article  CAS  Google Scholar 

  16. Kawamura, N., Kubota, T., Kawano, S., Monden, Y., Feldman, A. M., Tsutsui, H., et al. (2005). Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy. Cardiovascular Research, 66, 520–529.

    Article  CAS  Google Scholar 

  17. Lindsey, M. L. (2004). MMP induction and inhibition in myocardial infarction. Heart Failure Reviews, 9, 7–19.

    Article  CAS  Google Scholar 

  18. Gum, R., Lengyel, E., Juarez, J., Chen, J. H., Sato, H., Seiki, M., et al. (1996). Stimulation of 92-kDa gelatinase B promoter activity by ras is mitogen-activated protein kinase kinase 1-independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP-1 sequences. The Journal of Biological Chemistry, 271, 10672–10680.

    Article  CAS  Google Scholar 

  19. Sato, H., & Seiki, M. (1993). Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene, 8, 395–405.

    CAS  Google Scholar 

  20. Ogawa, K., Chen, F., Kuang, C., & Chen, Y. (2004). Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-beta is mediated by a nuclear factor-kappaB site. The Biochemical Journal, 381, 413–422.

    Article  CAS  Google Scholar 

  21. May, M. J., & Ghosh, S. (1997). Rel/NF-kappa B and I kappa B proteins: an overview. Seminars in Cancer Biology, 8, 63–73.

    Article  CAS  Google Scholar 

  22. De Martin, R., Hoeth, M., Hofer-Warbinek, R., & Schmid, J. A. (2000). The transcription factor NF-kappa B and the regulation of vascular cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, E83–E88.

    Article  Google Scholar 

  23. Barnes, P. J., & Adcock, I. M. (1997). NF-kappa B: a pivotal role in asthma and a new target for therapy. Trends in Pharmacological Sciences, 18, 46–50.

    Article  CAS  Google Scholar 

  24. Vincenti, M. P., & Brinckerhoff, C. E. (2007). Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? Journal of Cellular Physiology, 213, 355–364.

    Article  CAS  Google Scholar 

  25. He, C. (1996). Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Letters, 106, 185–191.

    Article  CAS  Google Scholar 

  26. Hemsley, A., Arnheim, N., Toney, M. D., Cortopassi, G., & Galas, D. J. (1989). A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Research, 17, 6545–6551.

    Article  CAS  Google Scholar 

  27. Kuan, T. C., Yang, T. H., Wen, C. H., Chen, M. Y., Lee, I. L., & Lin, C. S. (2011). Identifying the regulatory element for human angiotensin-converting enzyme 2 (ACE2) expression in human cardiofibroblasts. Peptides, 32, 1832–1839.

    Article  CAS  Google Scholar 

  28. Liu, Y. C., Lin, W. Y., Jhang, Y. R., Huang, S. H., Wu, C. P., & Wu, H. T. (2011). Efficiency of DNA transfection of rat heart myoblast cells H9c2(2-1) by either polyethyleneimine or electroporation. Applied Biochemistry and Biotechnology, 164, 1172–1182.

    Article  CAS  Google Scholar 

  29. Chang, C. C., Kuan, T. C., Hsieh, Y. Y., Ho, Y. J., Sun, Y. L., & Lin, C. S. (2011). Effects of diosgenin on myometrial matrix metalloproteinase-2 and -9 activity and expression in ovariectomized rats. International Journal of Biological Sciences, 7, 837–847.

    Article  CAS  Google Scholar 

  30. Chen, C. L., Huang, S. K., Lin, J. L., Lai, L. P., Lai, S. C., Liu, C. W., et al. (2008). Upregulation of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases in rapid atrial pacing-induced atrial fibrillation. Journal of Molecular and Cellular Cardiology, 45, 742–753.

    Article  CAS  Google Scholar 

  31. Jones, C. B., Sane, D. C., & Herrington, D. M. (2003). Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovascular Research, 59, 812–823.

    Article  CAS  Google Scholar 

  32. Nelson, A. R., Fingleton, B., Rothenberg, M. L., & Matrisian, L. M. (2000). Matrix metalloproteinases: biologic activity and clinical implications. Journal of Clinical Oncology, 18, 1135–1149.

    CAS  Google Scholar 

  33. Ye, S. (2000). Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biology, 19, 623–629.

    Article  CAS  Google Scholar 

  34. Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., et al. (2002). The human genome browser at UCSC. Genome Research, 12, 996–1006.

    CAS  Google Scholar 

  35. Clark, I. M., Swingler, T. E., Sampieri, C. L., & Edwards, D. R. (2008). The regulation of matrix metalloproteinases and their inhibitors. The International Journal of Biochemistry & Cell Biology, 40, 1362–1378.

    Article  CAS  Google Scholar 

  36. Eberhardt, W., Huwiler, A., Beck, K. F., Walpen, S., & Pfeilschifter, J. (2000). Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. Journal of Immunology, 165, 5788–5797.

    CAS  Google Scholar 

  37. Han, Y. P., Tuan, T. L., Hughes, M., Wu, H., & Garner, W. L. (2001). Transforming growth factor-beta - and tumor necrosis factor-alpha -mediated induction and proteolytic activation of MMP-9 in human skin. The Journal of Biological Chemistry, 276, 22341–22350.

    Article  CAS  Google Scholar 

  38. Lungu, G., Covaleda, L., Mendes, O., Martini-Stoica, H., & Stoica, G. (2008). FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappaB and activating protein-1. Molecular Carcinogenesis, 47, 424–435.

    Article  CAS  Google Scholar 

  39. Moon, S. K., Cha, B. Y., & Kim, C. H. (2004). ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP-1: involvement of the ras dependent pathway. Journal of Cellular Physiology, 198, 417–427.

    Article  CAS  Google Scholar 

  40. Sato, T., Ito, A., Ogata, Y., Nagase, H., & Mori, Y. (1996). Tumor necrosis factor alpha (TNFalpha) induces pro-matrix metalloproteinase 9 production in human uterine cervical fibroblasts but interleukin 1alpha antagonizes the inductive effect of TNFalpha. FEBS Letters, 392, 175–178.

    Article  CAS  Google Scholar 

  41. May, M. J., & Ghosh, S. (1998). Signal transduction through NF-kappa B. Immunology Today, 19, 80–88.

    Article  CAS  Google Scholar 

  42. Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: a tail of a frog that became a prince. Nature Reviews. Molecular Cell Biology, 3, 207–214.

    Article  CAS  Google Scholar 

  43. Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: an overview. Molecular and Cellular Biochemistry, 253, 269–285.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the grants of NSC 97-2313-B-415-005-MY3 from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsi Tien Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H.T., Sie, S.S., Kuan, T.C. et al. Identifying the Regulative Role of NF-κB Binding Sites Within Promoter Region of Human Matrix Metalloproteinase 9 (mmp-9) by TNF-α Induction. Appl Biochem Biotechnol 169, 438–449 (2013). https://doi.org/10.1007/s12010-012-9958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9958-3

Keywords

Navigation