Skip to main content
Log in

Nanofiltration Enrichment of Milk Oligosaccharides (MOS) in Relation to Process Parameters

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Bioactive milk oligosaccharide concentrates are not yet available as functional food ingredients. The aim of the present study was to develop an optimized nanofiltration process for the enrichment of milk oligosaccharides by achieving a better permeation of milk salts and residual sugars during nanofiltration in an acidic (pH 5) or neutral (pH 7) environment. A bovine retentate produced by nanofiltration with a 100-fold increase in the milk oligosaccharide content in relation to total sugar content was applied. In addition, the process should be suitable for the enrichment of milk oligosaccharides in caprine milk. Milk oligosaccharides were identified by high performance anion exchange chromatography (HPAEC). Generally, a greater enrichment of milk oligosaccharides in the final nanofiltration retentate (14 % milk oligosaccharides by dry mass, 4-fold higher than in the first nanofiltration retentate, 140-fold higher than in the raw material) and a better separation of salts and residual sugars were achieved in bovine milk by nanofiltration at pH 5. The high milk oligosaccharide content in relation to the total sugar content in the final nanofiltration retentate (92 %, 10-fold higher than in the first nanofiltration retentate, 900-fold higher than in the starting sample) indicated a nearly complete permeation of monosaccharides and disaccharides. Nanofiltration of caprine milk resulted in a 31-fold higher milk oligosaccharide content in relation to total sugar content than in the starting sample. In the present work, the influence of the pH on the degree of enrichment of milk oligosaccharides by nanofiltration was evaluated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht, S., Lane, A. L., Mariño, K., Al Busadah, K. A., Carrington, S. D., Hickey, R. M., & Rudd, P. M. (2014). A comparative study of free oligosaccharides in the milk of domestic animals. British Journal of Nutrition, 111(7), 1313–1328.

    Article  CAS  Google Scholar 

  • Altmann, K., Wutkowski, A., Kämpfer, S., Klempt, M., Lorenzen, P., & Clawin-Rädecker, I. (2015). Comparison of the efficiency of different NF membranes for the enrichment of milk oligosaccharides from bovine milk. European Food Research and Technology, 241(6), 803–815.

    Article  CAS  Google Scholar 

  • Anand, S., Khanal, S. N., & Marella, C. (2013). Whey and whey products. In Y. W. Park & G. F. W. Haenlein (Eds.), Milk and dairy products in human nutrition. Chichester, UK: Wiley-Blackwell.

    Google Scholar 

  • Barile, D., Tao, N., Lebrilla, C. B., Coisson, J.-D., Arlorio, M., & German, J. B. (2009). Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. International Dairy Journal, 19(9), 524–530.

    Article  CAS  Google Scholar 

  • Bode, L. (2009). Human milk oligosaccharides: prebiotics and beyond. Nutrition Reviews, 67(2), 183–191.

    Article  Google Scholar 

  • Bode, L. (2012). Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology, 22(9), 1147–1162.

    Article  CAS  Google Scholar 

  • Boehm, G., & Stahl, B. (2007). Oligosaccharides from milk. Journal of Nutrition, 137(3), 847S–8849.

    CAS  Google Scholar 

  • Bruggink, C., Maurer, R., Herrmann, H., Cavalli, S., & Hoefler, F. (2005). Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. Journal of Chromatography A, 1085(1), 104–109.

    Article  CAS  Google Scholar 

  • Fox, P. F., & Mcsweeney, P. (2009). Advanced dairy chemistry—volume 3: lactose, water, salts and minor constituents (3 ed.). Ireland: Springer.

    Google Scholar 

  • Frenzel, M., Zerge, K., Clawin-Rädecker, I., & Lorenzen, P. C. (2015). Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. LWT - Food Science and Technology, 60(2), 1068–1071.

    Article  CAS  Google Scholar 

  • Gopal, P. K., & Gill, H. S. (2000). Oligosaccharides and glycoconjugates in bovine milk and colostrum. British Journal of Nutrition, 84(supplement 1), 69–74.

    Google Scholar 

  • Kiskini, A., & Difilippo, E. (2013). Oligosaccharides in goat milk: structure, health effects and isolation. Cellular and Molecular Biology, 59(1), 25–30.

    CAS  Google Scholar 

  • Kunz, C., & Rudloff, S. (2006). Health promoting aspects of milk oligosaccharides. International Dairy Journal, 16(11), 1341–1346.

    Article  CAS  Google Scholar 

  • Lucey, J. A., & Horne, D. S. (2009). Milk salts: technological significance. In P. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry: volume 3: lactose, water and minor constituents (pp. 351–389). New York: Springer.

    Google Scholar 

  • Martinez-Ferez, A., Guadix, A., & Guadix, E. M. (2006a). Recovery of caprine milk oligosaccharides with ceramic membranes. Journal of Membrane Science, 276(1–2), 23–30.

    Article  CAS  Google Scholar 

  • Martinez-Ferez, A., Guadix, A., Zapata-Montoya, J. E., & Guadix, E. M. (2008). Influence of transmembrane pressure on the separation of caprine milk oligosaccharides from protein by cross-flow ultrafiltration. International Journal of Dairy Technology, 61(4), 333–339.

    Article  CAS  Google Scholar 

  • Martinez-Ferez, A., Rudloff, S., Guadix, A., Henkel, C. A., Pohlentz, G., Boza, J. J., Guadix, E. M., & Kunz, C. (2006b). Goats’ milk as a natural source of lactose-derived oligosaccharides: isolation by membrane technology. International Dairy Journal, 16(2), 173–181.

    Article  CAS  Google Scholar 

  • Mehra, R., Barile, D., Marotta, M., Lebrilla, C. B., Chu, C., & German, J. B. (2014). Novel high-molecular weight fucosylated milk oligosaccharides identified in dairy streams. PloS One, 9(5).

  • Mehra, R., & Kelly, P. (2006). Milk oligosaccharides: structural and technological aspects. International Dairy Journal, 16(11), 1334–1340.

    Article  CAS  Google Scholar 

  • Mulder, M. (1992). Basic principles of membrane technology. Dordrecht, The Netherlands: Kulwer Academic Publishers.

    Google Scholar 

  • Nielsen, W. K. (2000). Membrane filtration and related molecular separation technologies. Silkeborg, Denmark: APV Systems.

    Google Scholar 

  • Oliveira, D., Wilbey, R. A., Grandison, A., & Roseiro, L. (2014). Natural caprine whey oligosaccharides separated by membrane technology and profile evaluation by capillary electrophoresis. Food and Bioprocess Technology, 7(3), 915–920.

    Article  CAS  Google Scholar 

  • Oliveira, D. L., Wilbey, R. A., Grandison, A. S., Duarte, L. C., & Roseiro, L. B. (2012). Separation of oligosaccharides from caprine milk whey, prior to prebiotic evaluation. International Dairy Journal, 24(2), 102–106.

    Article  CAS  Google Scholar 

  • Oliveira, D. L., Wilbey, R. A., Grandison, A. S., & Roseiro, L. B. (2015). Milk oligosaccharides: a review. International Journal of Dairy Technology, 68(3), 305–321.

    Article  CAS  Google Scholar 

  • Packer, N., Lawson, M., Jardine, D., & Redmond, J. (1998). A general approach to desalting oligosaccharides released from glycoproteins. Glycoconjugate Journal, 15(8), 737–747.

    Article  CAS  Google Scholar 

  • Ramaswamy, H., & Marcotte, M. (2005). Food processing—principles and application. Boca Raton, USA: CRC Press.

    Book  Google Scholar 

  • Rice, G., Kentish, S., O’connor, A., Stevens, G., Lawrence, N., & Barber, A. (2006). Fouling behaviour during the nanofiltration of dairy ultrafiltration permeate. Desalination, 199(1–3), 239–241.

    Article  CAS  Google Scholar 

  • Sarney, D. B., Hale, C., Frankel, G., & Vulfson, E. N. (2000). A novel approach to the recovery of biologically active oligosaccharides from milk using a combination of enzymatic treatment and nanofiltration. Biotechnology and Bioengineering, 69(4), 461–467.

    Article  CAS  Google Scholar 

  • Sienkiewicz, T., & Riedel, C.-L. (1990). Whey and whey utilization. Gelsenkrichen, Germany: Th. Mann.

    Google Scholar 

  • Ten Bruggencate, S. J. M., Bovee-Oudenhoven, I. M. J., Feitsma, A. L., Van Hoffen, E., & Schoterman, M. H. C. (2014). Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutrition Reviews, 72(6), 377–389.

    Article  Google Scholar 

  • Thum, C., Cookson, A., Mcnabb, W. C., Roy, N. C., & Otter, D. (2015). Composition and enrichment of caprine milk oligosaccharides from New Zealand Saanen goat cheese whey. Journal of Food Composition and Analysis, 42, 30–37.

    Article  CAS  Google Scholar 

  • Töpel, A. (2004). Chemie und Physik der Milch: Naturstoff-Rohstoff-Lebensmittel. Hamburg: Behr’s Verlag.

    Google Scholar 

  • Urashima, T., Saito, T., Nakamura, T., & Messer, M. (2001). Oligosaccharides of milk and colostrum in non-human mammals. Glycoconjugate Journal, 18(5), 357–371.

    Article  CAS  Google Scholar 

  • Walstra, P., Geurts, T. J., Noomen, A., Jellema, A., & van Boekel, M. A. J. S. (1999). Dairy technology- principles of milk properties and processes. Basel: Marcel, Dekker, Inc..

    Google Scholar 

  • Zerge, K. (2014) Charakterisierung und Gewinnung von Oligosacchariden als potenielle funktionelle Lebensmittelinhaltsstoffe. Toctoral Thesis. Technical University Dresden. Dresden, Germany.

  • Zhao, H., Hua, X., Yang, R., Zhao, L., Zhao, W., & Zhang, Z. (2012). Diafiltration process on xylo-oligosaccharides syrup using nanofiltration and its modelling. International Journal of Food Science and Technology, 47(1), 32–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Altmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altmann, K., Clawin-Rädecker, I., Hoffmann, W. et al. Nanofiltration Enrichment of Milk Oligosaccharides (MOS) in Relation to Process Parameters. Food Bioprocess Technol 9, 1924–1936 (2016). https://doi.org/10.1007/s11947-016-1763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1763-5

Keywords

Navigation