Skip to main content
Log in

Antimicrobial Polylactic Acid Packaging Films against Listeria and Salmonella in Culture Medium and on Ready-to-Eat Meat

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The contamination of Listeria monocytogenes and Salmonella spp. in ready-to-eat (RTE) meat products has been a concern for the meat industry. In this study, edible chitosan-acid solutions incorporating lauric arginate ester (LAE), sodium lactate (NaL), and sorbic acid (SA) alone or in combinations were developed and coated on polylactic acid (PLA) packaging films. Antimicrobial effects of coated PLA films on the growth of Listeria innocua, L. monocytogenes, and Salmonella Typhimurium in a culture medium (tryptic soy broth, TSB) and on the surface of meat samples were investigated. Antimicrobial PLA films containing 1.94 mg/cm2 of chitosan and 1.94 μg/cm2 of LAE were the most effective against both Listeria and Salmonella in TSB and reduced them to undetectable level (<0.69 log CFU/ml). The same PLA films with LAE significantly (p < 0.05) reduced the growth of L. innocua, L. monocytogenes, and S. Typhimurium on RTE meat during 3 and 5 weeks’ storage at 10 °C, achieving 2–3 log reduction of Listeria and 1–1.5 log reduction of Salmonella as compared with controls. PLA films coated with 1.94 mg/cm2 of chitosan, 0.78 mg/cm2 of NaL, and 0.12 mg/cm2 of SA significantly reduced the growth of L. innocua but were less effective against Salmonella. The combination of NaL (0.78 mg/cm2) and SA (0.12 mg/cm2) with LAE (1.94 μg/cm2) did not generate additional or synergetic antimicrobial effect against Listeria or Salmonella on the meat surface. L. innocua had a similar sensitivity to the film treatments as L. monocytogenes, suggesting that L. innocua may be used as a surrogate of L. monocytogenes for further scaleup and validation studies. The film treatments were more effective against the microorganisms in TSB culture medium than in RTE meat, which suggests that in vivo studies are a necessary step to develop antimicrobial packaging for applications in foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anacarso, I., Niederhäusern, S., Iseppi, R., Sabia, C., Bondi, M., & Messi, P. (2011). Anti-listerial activity of chitosan and Enterocin 416K1 in artificially contaminated RTE products. Food Control, 22, 2076–2080.

    Article  CAS  Google Scholar 

  • Azevedo, A. N., Buarque, P. R., Cruz, E. M. O., Blank, A. F., Alves, P. B., Nunes, M. L., et al. (2014). Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control, 43, 1–9.

    Article  CAS  Google Scholar 

  • Bakal, G., & Diaz, A. (2005). The lowdown on lauric arginate. Food Quality, 12(1), 54–61.

    Google Scholar 

  • Bedie, G. K., Samelis, J., Sofos, J. N., Belk, K. E., Scanga, J. A., & Smith, G. C. (2001). Antimicrobials in the formulation to control Listeria monocytogenes postprocessing contamination on frankfurters stored at 4 °C in vacuum packages. Journal of Food Protection, 64(12), 1949–1955.

    CAS  Google Scholar 

  • Brewer, M. S., Rostogi, B. K., Argoudelis, L., & Sprouls, G. K. (1995). Sodium lactate/sodium chloride effects on aerobic plate count and color of aerobically packaged ground pork. Journal of Food Science, 60, 58–62.

    Article  CAS  Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.

    Article  CAS  Google Scholar 

  • Cagri, A., Ustunol, Z., & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67, 833–848.

    CAS  Google Scholar 

  • Canillac, N., & Mourey, A. (2001). Antibacterial activity of the essential oil of Picea excelsa on Listeria, Staphylococcus aureus and coliform bacteria. Food Microbiology, 18, 261–268.

    Article  CAS  Google Scholar 

  • Chen, M. C., Yeh, G. H. C., & Chiang, B. H. (1996). Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. Journal of Food Processing and Preservation, 20, 279–390.

    Article  Google Scholar 

  • Chen, W., Jin, T., Gurtler, J. B., Geveke, D. J., & Fan, X. (2012). Inactivation of Salmonella on whole cantaloupe by application of an antimicrobial coating containing chitosan and allyl isothiocyanate. International Journal of Food Microbiology, 155, 165–170.

    Article  CAS  Google Scholar 

  • Coma, V., Sebti, I., Pardon, P., Deschamps, A., & Pichavant, F. H. (2001). Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. Journal of Food Protection, 64(4), 470–475.

    CAS  Google Scholar 

  • Conte, A., Sinigaglia, M., & Del Nobile, M. A. (2006). Antimicrobial effectiveness of lysozyme immobilized on polyvinylalcohol-based film against Alicyclobacillus acidoterrestris. Journal of Food Protection, 69, 861–865.

    CAS  Google Scholar 

  • Delaquis, P. J., Stanich, K., Girard, B., & Mazza, G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International Journal of Food Microbiology, 74, 101–109.

    Article  CAS  Google Scholar 

  • Doores, S. (1993). Organic acids. In P. M. Davidson & A. L. Branen (Eds.), Antimicrobials in foods (2nd ed., pp. 95–136). New York: Marcel Dekker.

    Google Scholar 

  • Doores, S. (2002). pH control agents and acidulants. In A. L. Branen, P. M. Davidson, S. Salminen, & J. H. Thorngate III (Eds.), Food additives (2nd ed., pp. 621–660). New York: Marcel Dekker.

    Google Scholar 

  • Dorsa, W. J., Marshall, D. L., & Semien, M. (1993). Effect of potassium sorbate and citric acid sprays on growth of Listeria monocytogenes on cooked crawfish tail meat at 4 °C. Lebensmittel-Wissenschaft und-Technologie, 26, 480–483.

    Article  CAS  Google Scholar 

  • Duan, J., Park, S.-I., Daeschel, M. A., & Zhao, Y. (2007). Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. Journal of Food Science, 72(9), M355–M362.

    Article  CAS  Google Scholar 

  • Durango, A. M., Soares, N. F. F., & Andrade, N. J. (2006). Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control, 17, 336–341.

    Article  CAS  Google Scholar 

  • El-Shenawy, M. A., Yousef, A. E., & Marth, E. A. (1989). Radiation sensitivity of Listeria monocytogenes in broth or in raw ground beef. Lebensmittel-Wissenschaft und-Technologie, 22, 387–390.

    Google Scholar 

  • Eswaranandam, S., Hettiarachchy, N. S., & Johnson, M. G. (2004). Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. Journal of Food Science, 69, FMS79–FMS84.

    CAS  Google Scholar 

  • Fairchild, T. M., & Foegeding, P. M. (1993). A proposed nonpathogenic biological indicator for thermal inactivation of Listeria monocytogenes. Applied and Environmental Microbiology, 59, 1247–1250.

    CAS  Google Scholar 

  • Francis, G. A., & O’Beirne, D. (1998). Effect of the indigenous microflora of a minimally processed lettuce on the survival and growth of Listeria innocua. International Journal of Food Science and Technology, 33, 477–488.

    Article  CAS  Google Scholar 

  • Gervilla, R., Capellas, M., Ferragut, V., & Guamis, B. (1997). Effect of high hydrostatic pressure on Listeria innocua 910 CECT inoculated into ewe’s milk. Journal of Food Protection, 60(1), 33–37.

    CAS  Google Scholar 

  • Gill, A. O., & Holley, R. A. (2000). Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. Journal of Food Protection, 63, 1338–1346.

    CAS  Google Scholar 

  • Grinstead, A. D., & Angevaare, P. A. (2003). Food washing composition. US patent 20030099745.

  • Guo, M., Jin, T., Scullen, O. J., & Sommers, C. H. (2013a). Effects of antimicrobial coatings and cryogenic freezing on survival and growth of Listeria innocua on frozen ready-to-eat shrimp during thawing. Journal of Food Science, 78, M1195–M1200.

    Article  CAS  Google Scholar 

  • Guo, M., Jin, T., Yang, R., Antenucci, R., Mills, B., Cassidy, J., et al. (2013b). Inactivation of natural microflora and inoculated Listeria innocua on whole raw shrimp by ozonated water, antimicrobial coatings, and cryogenic freezing. Food Control, 34, 24–30.

    Article  Google Scholar 

  • Gurtler, J. B., Smelser, A. M., Niemira, B. A., Jin, T., Yan, X., & Geveke, D. J. (2012). Inactivation of Salmonella enterica on tomato stem scars by sanitizing solutions and vacuum perfusion. International Journal of Food Microbiology, 159, 84–92.

    Article  CAS  Google Scholar 

  • Harpaz, S., Glatman, L., Drabkin, V., & Gelman, A. (2003). Effects of herbal essential oils used to extend the shelf life of freshwater-reared Asian sea bass fish (Lates calcarifer). Journal of Food Protection, 66, 410–417.

    CAS  Google Scholar 

  • Houtsma, P. C., de Wit, J. C., & Rombout, F. M. (1993). Minimum inhibitory concentration (MIC) of sodium lactate for pathogens and spoilage organisms occurring in meat products. International Journal of Food Microbiology, 20, 247–257.

    Article  CAS  Google Scholar 

  • Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Review of Food Science and Food Safety, 9, 552–571.

    Article  CAS  Google Scholar 

  • Janes, M. E., Kooshesh, S., & Johnson, M. G. (2002). Control of Listeria monocytogenes on the surface of refrigerated, ready-to-eat chicken coated with edible zein film coatings containing nisin and/or calcium propionate. Journal of Food Science, 67(7), 2754–2757.

    Article  Google Scholar 

  • Jin, T., & Gurtler, J. B. (2012). Inactivation of Salmonella on tomato stem scars by edible chitosan and organic acid coatings. Journal of Food Protection, 75(8), 1368–1372.

    Article  CAS  Google Scholar 

  • Jin, T., & Niemira, B. A. (2011). Application of polylactic acid coating with antimicrobials in reduction of Escherichia coli O157:H7 and Salmonella Stanley on apples. Journal of Food Science, 76, 184–188.

    Article  Google Scholar 

  • Jin, T., & Zhang, H. (2008). Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. Journal of Food Science, 73, 127–134.

    Article  Google Scholar 

  • Jin, T., Liu, L., Sommers, C. H., Boyd, G., & Zhang, H. (2009a). Radiation sensitization and postirradiation proliferation of Listeria monocytogenes on ready-to-eat deli meat in the presence of pectin-nisin films. Journal of Food Protection, 72, 644–649.

    Google Scholar 

  • Jin, T., Liu, L. S., Zhang, H., & Hicks, K. (2009b). Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. International Journal of Food Science and Technology, 44, 322–329.

    Article  CAS  Google Scholar 

  • Jin, T., Gurtler, J. B., & Li, S. Q. (2013). Development of antimicrobial coatings for improving the microbiological safety and quality of shell eggs. Journal of Food Protection, 76(5), 779–785.

    Article  CAS  Google Scholar 

  • Juck, G., Neetoo, H., & Chen, H. (2010). Application of an active alginate coating to control the growth of Listeria monocytogenes on poached and deli turkey products. International Journa of Food Microbiology, 142, 302–308.

    Article  CAS  Google Scholar 

  • Kamat, A. S., & Nair, M. P. (1995). Gamma irradiation as a means to eliminate Listeria monocytogenes from frozen chicken meat. Journal of the Science of Food and Agriculture, 69, 415–422.

    Article  CAS  Google Scholar 

  • Karatzas, A., Kets, E., Smid, E., & Bennik, M. (2002). The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. Journal of Applied Microbiology, 90, 463–469.

    Article  Google Scholar 

  • Kim, K., Daeschel, M. A., & Zhao, Y. (2008). Edible coating for enhancing microbial safety and extending shelf life of hard-boiled eggs. Journal of Food Science, 73(5), M227–M235.

    Article  CAS  Google Scholar 

  • Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144, 51–63.

    Article  CAS  Google Scholar 

  • Leistner, L. (1992). Food preservation by combined methods. Food Research International, 25, 151–158.

    Article  Google Scholar 

  • Lemons, K. E. (2009). Antimicrobial compositions and methods of use thereof. US patent 20090192231.

  • Li, W., Liu, L., & Jin, T. Z. (2012). Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions. Journal of Food Protection, 75, 2234–2237.

    Article  CAS  Google Scholar 

  • Liu, L., Jin, T. Z., Coffin, D. R., & Hicks, K. B. (2009). Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and nisaplin in the presence of plasticizers. Journal of Agricutural and Food Chemistry, 57, 8392–8398.

    Article  CAS  Google Scholar 

  • Liu, L., Jin, T. Z., Coffin, D. R., Liu, C.-K., & Hicks, K. B. (2010). Poly(lactic acid) membranes containing bacteriocins and EDTA for inhibition of the surface growth of gram-negative bacteria. Journal of Applied Polymer Science, 117, 486–492.

    CAS  Google Scholar 

  • Lungu, B., & Johnson, M. (2005). Fate of Listeria monocytogenes inoculated onto the surface of model turkey frankfurter pieces treated with zein coatings containing nisin, sodium diacetate, and sodium lactate at 4 °C. Journal of Food Protection, 68, 855–859.

    CAS  Google Scholar 

  • Ma, Q., Davidson, P. M., & Zhong, Q. (2013). Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2 % reduced fat milk. International Journal of Food Microbiology, 166, 77–84.

    Article  CAS  Google Scholar 

  • Maca, J. V., Miller, R. K., Bigner, M. E., Lucia, L. M., & Acuff, G. R. (1999). Sodium lactate and storage temperature effects on shelf life of vacuum packaged beef top rounds. Meat Science, 53, 23–29.

    Article  CAS  Google Scholar 

  • Mbandi, E., & Shelef, L. A. (2001). Enhanced inhibition of Listeria monocytogenes and Salmonella enteritidis in meat by combinations of sodium lactate and diacetate. Journal of Food Protection, 64, 640–644.

    CAS  Google Scholar 

  • Mbandi, E., & Shelef, L. A. (2002). Enhanced antimicrobial effects of combination of lactate and diacetate on Listeria monocytogenes and Salmonella spp. in beef bologna. International Journal of Food Microbiology, 76, 191–198.

    Article  CAS  Google Scholar 

  • Miller, R. K., & Acuff, G. R. (1994). Sodium lactate affects pathogens in cooked beef. Journal of Food Science, 59, 15–19.

    Article  CAS  Google Scholar 

  • Miltz, J., Rydlo, T., Mor, A., & Polyakov, V. (2006). Potency evaluation of a dermaseptin S4 derivative for antimicrobial food packaging applications. Packaging Technology and Science, 19, 345–354.

    Article  CAS  Google Scholar 

  • Min, B., Han, I., & Dawson, P. (2010). Antimicrobial gelatin films reduce Listeria monocytogenes on turkey bologna1. Poultry Science, 89, 1307–1314.

    Article  CAS  Google Scholar 

  • Ming, X., Weber, G. H., Ayres, J. W., & Sandine, W. E. (1997). Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes. Journal of Food Science, 62(2), 413–415.

    Article  CAS  Google Scholar 

  • Mohamed, H. M. H., Elnawawi, F. A., & Yousef, A. E. (2011). Nisin treatment to enhance the efficacy of gamma radiation against Listeria monocytogenes on meat. Journal of Food Protection, 74(2), 193–199.

    Article  Google Scholar 

  • Muriel-Galet, V., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2012). Antimicrobial food packaging film based on the release of LAE from EVOH. International Journal of Food Microbiology, 157, 239–244.

    Article  CAS  Google Scholar 

  • Nou, X., Luo, Y., Hollar, L., Yang, Y., Feng, H., Millner, P., et al. (2011). Chlorine stabilizer T-128 enhances efficacy of chlorine against cross-contamination by E. coli O157:H7 and Salmonella in fresh-cut lettuce processing. Journal of Food Science, 76, M218–M224.

    Article  CAS  Google Scholar 

  • Patterson, M. F. (1989). Sensitivity of Listeria monocytogenes to irradiation in poultry meat and in phosphate buffered saline. Letters in Applied Microbiology, 8, 181–184.

    Article  Google Scholar 

  • Perdonesa, A., Sanchez-Gonzalez, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32–41.

    Article  Google Scholar 

  • Ponce, E., Pla, R., Mor-Mur, M., Gervilla, R., & Guamis, B. (1998). Inactivation of Listeria innocua inoculated in liquid whole egg by high hydrostatic pressure. Journal of Food Protection, 61, 119–122.

    CAS  Google Scholar 

  • Ruckman, S. A., Rocabayera, X., Borzelleca, J. F., & Sandusky, C. B. (2004). Toxicological and metabolic investigations of the safety of N-α-Lauroyl-1-arginine ethyl ester monohydrochloride (LAE). Food and Chemical Toxicology, 42, 245–259.

    Article  CAS  Google Scholar 

  • Samelis, J., Sofos, J. N., Kain, M. L., Scanga, J. A., Belk, K. E., & Smith, G. C. (2001). Organic acid and their salts as dipping solutions to control Listeria monocytogenes inoculated following processing of sliced pork bologna stored at 4 °C in vacuum packages. Journal of Food Protection, 64, 1722–1729.

    CAS  Google Scholar 

  • Shelef, L. A. (1994). Antimicrobial effects of lactates: a review. Journal of Food Protection, 57, 445–450.

    CAS  Google Scholar 

  • Shelef, L., Jyothi, E., & Bulgarellii, M. (2006). Growth of enteropathogenic and spoilage bacteria in sage–containing broth and foods. Journal of Food Science, 49, 737–740.

    Article  Google Scholar 

  • Siragusa, G. A., & Dickson, J. S. (1992). Inhibition of Listeria monocytogenes on beef tissue by application of organic acids immobilized in a calcium alginate gel. Journal of Food Science, 57, 293–296.

    Article  CAS  Google Scholar 

  • Siragusa, G. R., & Dickson, J. S. (1993). Inhibition of Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7 on beef muscle tissue by lactic or acetic acid contained in calcium alginate gels. Journal of Food Safety, 13(2), 147–158.

    Article  CAS  Google Scholar 

  • Soni, K., Nannapaneni, R., Schilling, M., & Jackson, V. (2010). Bactericidal activity of lauric arginate in milk and Queso Fresco cheese against Listeria monocytogenes cold growth. Journal of Dairy Science, 93, 4518–4525.

    Article  CAS  Google Scholar 

  • Theinsathid, P., Visessanguan, W., Kruenate, J., Kingcha, Y., & Keeratipibul, S. (2012). Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella Typhimurium on cooked sliced ham. Journal of Food Science, 77, 142–149.

    Article  Google Scholar 

  • Torlak, E., & Sert, D. (2014). Antibacterial effectiveness of chitosan-propolis coated polypropylene films against foodborne pathogens. International Journal of Biological Macromolecules, 60, 53–55.

    Google Scholar 

  • Vaara, M. (1992). Agents that increase the permeability of the outer membrane. Microbiological Reviews, 56(3), 395–411.

    CAS  Google Scholar 

  • Vasavada, M., Carpenter, C. E., Cornforth, D. P., & Ghorpade, V. (2003). Sodium levulinate and sodium lactate effects on microbial growth and stability of fresh pork and turkey sausages. Journal of Muscle Foods, 14, 119–129.

    Article  CAS  Google Scholar 

  • Wang, S., Shen, L., Tong, Y., Chen, L., Phang, I., Lim, P., et al. (2005). Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polymer Degradation and Stability, 90(1), 123–131.

    Article  CAS  Google Scholar 

  • Xu, Y., Ren, X., & Hanna, M. A. (2005). Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 99(4), 1684–1691.

    Article  Google Scholar 

  • Zhang, Y., Yam, K., & Chikindas, M. (2004). Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. International Journal of Food Microbiology, 90, 15–22.

    Article  Google Scholar 

  • Zhuang, R., Beuchat, L. R., Chinnan, M. S., Shewfelt, R. L., & Huang, Y. W. (1996). Inactivation of Salmonella montevideo on tomatoes by applying cellulose-based edible films. Journal of Food Protection, 59(8), 808–812.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Andy Hwang for the thoughtful review of this manuscript and Anita Parameswaran for her excellent technical assistance. This study was funded by the USDA-ARS CRIS project 1935-41420-092-00D through ARS National Program 108. Author Mingming Guo wishes to thank the Chinese Scholarship Council for financial support to work at ERRC-ARS-USDA. All work was done at ERRC-ARS-USDA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tony Z. Jin or Ruijin Yang.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Jin, T.Z. & Yang, R. Antimicrobial Polylactic Acid Packaging Films against Listeria and Salmonella in Culture Medium and on Ready-to-Eat Meat. Food Bioprocess Technol 7, 3293–3307 (2014). https://doi.org/10.1007/s11947-014-1322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1322-x

Keywords

Navigation