Skip to main content
Log in

On the length of commutators in Chevalley groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let G = G(Φ,R) be the simply connected Chevalley group with root system Φ over a ring R. Denote by E(Φ,R) its elementary subgroup. The main result of the article asserts that the set of commutators C = {[a, b]|aG(Φ, R), bE(Φ, R)} has bounded width with respect to elementary generators. More precisely, there exists a constant L depending on Φ and dimension of maximal spectrum of R such that any element from C is a product of at most L elementary root unipotent elements. A similar result for Φ = A l , with a better bound, was earlier obtained by Sivatski and Stepanov.

The width of the linear elementary group E n (R) with repect to elementary generators or the set of all commutators was studied by Carter, Keller, Dennis, Vaserstein, van der Kallen and others. It is related to the computation of the Kazhdan constant. For example, the width of (E n (R) is finite if R is semilocal (by Gauus decomposition) of R = ℤ (Carter, Keller), but is infinite for R = ℂ[x] (van der Kallen). Already for R = F[x] over a finite field F this question is open.

Van der Kallen noticed that the group E(Φ, R)/E(Φ,R ) is an obstruction for the finitness of width of E(Φ, R), were infinte power means the direct product of countably many copies of a ring or a group. The main resutl of the article is equivalent to the fact that this group is central in K 1(Φ,R ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abe, Chevalley groups over local rings, Tokyo Journal of Mathematics 21 (1969), 474–494.

    MATH  Google Scholar 

  2. E. Abe, K. Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tokyo Journal of Mathematics 28 (1976), 185–198.

    MathSciNet  MATH  Google Scholar 

  3. S. I. Adian and J. Mennicke, Bounded generation of SLn(ℤ), International Journal of Algebra and Computation 2 (1992), 357–365.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bak, Non-abelian K-theory: The nilpotent class of K1 and general stability, K-Theory 4 (1991), 363–397.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bak, R. Hazrat and N. Vavilov, Localization-completion strikes again: relative K1 is nilpotent by abelian, Journal of Pure and Applied Algebra 213 (2009), 1075–1085.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bak and A. Stepanov, Dimension theory and non-stable K-theory for net subgroups, Rendiconti del Seminario Matematico della Universitá di Padova 106 (2001), 207–253.

    MathSciNet  MATH  Google Scholar 

  7. A. Bak and N. Vavilov, Normality of the elementary subgroup functors Mathematical Proceedings of the Cambridge Philosophical Society 118 (1995), 35–47.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Carter and G. Keller, Bounded elementary generation of SLn(O), American Journal of Mathematics 105 (1983), 673–687.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Carter and G. Keller, Elementary expressions for unimodular matrices, Communications in Algebra 12 (1984), 379–389.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Carter, G. Keller and E. Paige, Bounded expressions in SL(2,O), 1985, unpublished.

  11. P. M. Cohn, On the structure of the GL2 of a ring, Publications Mathématiques. Institut de Hautes Études Scientifiques (1967), 5–53.

  12. G. Cooke, P. J. Weinberger, On the construction of division chains in algebraic number rings, with applications to SL2, Communications in Algebra 3 (1975), 481–524.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. K. Dennis and L. N. Vaserstein, On a question of M. Newman on the number of commutators, Journal of Algebra 118 (1988), 150–161.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. K. Dennis and L. N. Vaserstein, Commutators in linear groups, K-Theory 2 (1989), 761–767.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Ellers, N. Gordeev, On the conjectures of J. Thompson and O. Ore, Transactions of the American Mathematical Society 350 (1998), 3657–3671.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Ellers, N. Gordeev and M. Herzog, Covering numbers for Chevalley groups, Israel Journal of Mathematics 111 (1999), 339–372.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. V. Erovenko and A. S. Rapinchuk, Bounded generation of some S-arithmetic orthogonal groups, Comptes Rendus de l’Académie des Sciences 333 (2001), 395–398.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Gordeev and J. Saxl, Products of conjugacy classes in Chevalley groups. I. Extended covering numbers, Israel Journal of Mathematics 130 (2002), 207–248.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Gordeev and J. Saxl, Products of conjugacy classes in Chevalley groups. II. Covering and generation, Israel Journal of Mathematics 130 (2002), 249–258.

    Article  MathSciNet  MATH  Google Scholar 

  20. U. Hadad, Uniform Kazhdan constant for {SLn(ℤ)} n≥ 3, ArXiv:mathRT/0612390v1 (2006), 1–16.

  21. A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin, 1989.

    Google Scholar 

  22. P. de la Harpe and G. Skandalis Sur la simplicité essentielle du groupe des inversibles et du groupe unitaire dans une C*-algèbre simple, Journal of Functional Analysis 62 (1985), 354–378.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Hazrat, Dimension theory and non-stable K1 of quadratic module, K-Theory 27 (2002), 293–327.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Hazrat, On K-theory of classical-like groups, Doktorarbeit Uni. Bielefeld, 2002, pp. 1–62.

  25. R. Hazrat and N. Vavilov, K1 of Chevalley groups are nilpotent, Journal of Pure and Applied Algebra 179 (2003), 99–116.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Hazrat and N. Vavilov Bak’s work on K-theory of rings (with an appendix by Max Karoubi), K-Theory 4 (2009), 1–65.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. James, W. Waterhouse and B. Weisfeiler Abstract homomorphisms of algebraic groups: problems and bibliography, Communications in Algebra 9 (1981), 95–114.

    Article  MathSciNet  MATH  Google Scholar 

  28. W. van der Kallen, SL3(ℂ[x]) does not have bounded word length, in Lecture Notes in Mathematics, Springer, Berlin, 966, 1982, pp. 357–361.

    Google Scholar 

  29. W. van der Kallen, A module structure on certain orbit sets of unimodular rows, Journal of Pure and Applied Algebra 57 (1989), 281–316.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Kassabov, Kazhdan constants for SLn(ℤ), International Journal of Algebra and Computation 15 (2005), 971–995.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Liebeck, E. A. O’Brien, A. Shalev and P. Huu Tiep, The Ore conjecture, Journal of the European Mathematical Society 12 (2010), 939–1008.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Liehl, Beschränkte Wortlänge in SL2, Mathematische Zeitschrift 186 (1984), 509–524.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. W. Morris, Bounded generation of SL(n,A) (after D. Carter, G. Keller, and E. Paige), New York Journal of Mathematics 13 (2007), 383–421.

    MathSciNet  MATH  Google Scholar 

  34. I. M. Pevzner, Root Elements in Exceptional Groups, Ph.D. Thesis, St.-Petersburg State University, 2008, 1–149. (in Russian)

  35. Y. Shalom, Bounded generation and Kazhdan property (T), Publications Mathématiques. Institut de Hautes Études Scientifiques 90 (1999), 145–168.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Sivatski and A. Stepanov, On the word length of commutators in GLn(R), K-theory 17 (1999), 295–302.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. R. Stein, Surjective stability in dimension 0 for K2 and related functors, Transactions of the American Mathematical Society 178 (1973), 176–191.

    Google Scholar 

  38. A. Stepanov, N. Vavilov Decomposition of transvections: A theme with variations, KTheory 19 (2000), 109–153.

    MathSciNet  MATH  Google Scholar 

  39. G. Taddei, Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau, Contemporary Mathematics 55 Part II (1986), 693–710.

    MathSciNet  Google Scholar 

  40. O. I. Tavgen, Finite width of arithmetic subgroups of Chevalley groups of rank ≥ 2 Soviet Doklady Mathematics 41 (1990), 136–140.

    MathSciNet  MATH  Google Scholar 

  41. O. I. Tavgen, Bounded generation of Chevalley groups over rings of S-integer algebraic numbers, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 54 (1990), 97–122.

    MATH  Google Scholar 

  42. O. I. Tavgen, Bounded generation of normal and twisted Chevalley groups over the rings of S-integers, Contemporary Mathematics 131 (1992), 409–421.

    MathSciNet  Google Scholar 

  43. N. Vavilov, Structure of Chevalley groups over commutative rings, in Proceedings of a Conference Non-associative Algebras and Related Topics (Hiroshima — 1990), World Sci. Publ. London, Singapore, 1991, pp. 219–335.

    Google Scholar 

  44. N. Vavilov, A third look at weight diagrams, Rendiconti del Rendiconti del Seminario Matematico della Universitá di Padova 204 (2000), 201–250.

    MathSciNet  Google Scholar 

  45. N. Vavilov and E. Plotkin Chevalley groups over commutative rings. I. Elementary calculations, Acta Applicandae Mathematicae 45 (1996), 73–115.

    Article  MathSciNet  MATH  Google Scholar 

  46. N. A. Vavilov, E. B. Plotkin and A. V. Stepanov, Calculations in Chevalley groups over commutative rings, Soviet Doklady Mathematics 40 (1990), 145–147.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Stepanov.

Additional information

At various stages the work on this article was supported by INTAS 03-51-3251, RFFI 03-01-00349, NSh-8464.2006.1 (Russian Ministry of Education), and RFFI research projects 08-01-00756 (RGPU), 09-01-00762 (Siberian Federal University), 09-01-00784 (POMI), 09-01-00878 (SPbGU), RFFI-DFG cooperation project 09-01-91333 (POMI-LMU) and RFFI-VAN cooperation project 09-01-90304 (SPbGU-HCMU).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanov, A., Vavilov, N. On the length of commutators in Chevalley groups. Isr. J. Math. 185, 253–276 (2011). https://doi.org/10.1007/s11856-011-0109-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0109-2

Keywords

Navigation