Skip to main content
Log in

Bounded generation and commutator width of Chevalley groups: function case

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that Chevalley groups over polynomial rings \(\mathbb {F}_q[t]\) and over Laurent polynomial \(\mathbb {F}_q[t,t^{-1}]\) rings, where \(\mathbb {F}_q\) is a finite field, are boundedly elementarily generated. Using this we produce explicit bounds of the commutator width of these groups. Under some additional assumptions, we prove similar results for other classes of Chevalley groups over Dedekind rings of arithmetic rings in positive characteristic. As a corollary, we produce explicit estimates for the commutator width of affine Kac–Moody groups defined over finite fields. The paper contains also a broader discussion of the bounded generation problem for groups of Lie type, some applications and a list of unsolved problems in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The difference between the number and function cases is subtle enough and may be overlooked when approaching from outside. We quote from page 2 of the memoir [28]: ‘...G is known to be boundedly generated by X only in a few cases, namely, when R is a finite extension of \({\mathbb {Z}}\) or F[t], with F a finite field.’ In a sense, the present paper, along with [51], can be viewed as a first step along the long and painful road to justification of this brave claim.

  2. After the preliminary version of the present paper has been finished, there appeared a preprint of Alexander Trost [81] where the statement of our Theorem A was established for the ring of integers R of an arbitrary global function field K, with a bound of the form , where the factor L depends on q and of the degree d of K. His method is similar to Morris’ approach in [49]. The subsequent preprint [82] contains further improvements for the group , \(n\geqslant 3\), over an arbitrary global function ring R.

  3. On the other hand, since \(B\cap U^-=e\), it is never a product of three such unipotents, unless \(\varepsilon =1\).

  4. In the literature, expressions bounded generation and finite width are used in several related but significantly different contexts. Oftentimes one calls a group G boundedly generated if it has bounded generation with respect to the powers of some finite generating set. This amounts to the group being a finite product of several cyclic subgroups. In many situations it is equally meaningful to consider groups which are finite products of abelian subgroups. Finally, one calls families \(G_i\) of finitely presented groups boundedly generated if they can be presented in such a way that the sums of the number of generators and relations of \(G_i\) are uniformly bounded.

  5. In the literature, three of four completely different commodities are merchandised under the common name of Gauß decomposition: (1) the big cell decomposition LU, as in the affine group schemes textbooks, (2) the Birkhoff LPU-decomposition as in Ellers–Gordeev [25], (3) the LUP-decomposition, as in the computational linear algebra textbooks. Here we speak of (4) the DULU-decomposition, consult [68] for the historical background.

  6. Or, actually, the number of its prime divisors. Later, Loukanidis and Murty [43, 50] obtained bounds that depended on n and the degree \(|K\,{:}\,\mathbb {Q}|\) of K, not the discriminant.

  7. Well, explicit use of infinitesimals does make life easier, sometimes. Say, in R itself there are no non-obvious ideals such that \(I^2=I\), whereas in \({}^*R\) there is such an ideal consisting of all infinitesimal elements, which can be very handy. But these simplifications are mostly relevant in the [difficult] case \(n=2\), see the next subsection.

  8. The proof from [10] with several successful deteriorations, without reference to [10], and with a worse bound 73 was subsequently reproduced in [2].

  9. See [89], where it is [essentially] proven for \(R=\mathbb {Z}[1/p]\), again modulo GRH.

  10. Recall that our standing assumption \(|S|\geqslant 2\) excludes the problematic case \(R=\mathbb {Z}\).

  11. As we know from Sect. 4, this does not influence boundedness or lack thereof, but may affect the actual bounds.

  12. There is an exception: in [9] the term ‘local units’ is used for calling nonzero elements of the local field \(K_v\), where v is a place of K. We avoid using such a terminology because ‘local unit’ commonly refers to an invertible element of the valuation ring \(O_v\).

  13. The relevant facts in [14] are formulated for Kac–Moody groups over \({\mathbb {C}}\). However, the construction remains valid for an appropriate \({\mathbb {Z}}\)-model [30] and hence the needed results from [14] can be extended to groups over \({\mathbb {F}}_q\).

References

  1. Abért, M., Lubotzky, A., Pyber, L.: Bounded generation and linear groups. Internat. J. Algebra Comput. 13(4), 401–413 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Adian, S.I., Mennicke, J.: Bounded generation of \({{\rm SL}}(n,{ Z})\). Internat. J. Algebra Comput. 2(4), 357–365 (1992)

    MathSciNet  Google Scholar 

  3. Arlinghaus, F.A., Vaserstein, L.N., You, H.: Commutators in pseudo-orthogonal groups. J. Austral. Math. Soc. Ser. A 59(3), 353–365 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Aschenbrenner, M., Khélif, A., Naziazeno, E., Scanlon, T.: The logical complexity of finitely generated commutative rings. Int. Math. Res. Not. IMRN 2020(1), 112–166 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Avni, N., Lubotzky, A., Meiri, C.: First order rigidity of non-uniform higher rank arithmetic groups. Invent. Math. 217(1), 219–240 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Avni, N., Meiri, C.: Words have bounded width in \({\rm SL}(n,{\mathbb{Z} })\). Compositio Math. 155(7), 1245–1258 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem for \({\rm SL}_n (n\geqslant 3)\) and \({\rm Sp}_{2n} (n\geqslant 2)\). Inst. Hautes Études Sci. Publ. Math. 33, 59–137 (1967)

    Google Scholar 

  8. Behr, H.: Arithmetic groups over function fields. I: A complete characterization of finitely presented arithmetic subgroups of reductive algebraic groups. J. Reine Angew. Math. 495, 79–118 (1998)

  9. Carter, D., Keller, G.: Bounded elementary generation of \({{\rm SL}}_n({{\mathscr {O}}})\). Amer. J. Math. 105(3), 673–687 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Carter, D., Keller, G.: Elementary expressions for unimodular matrices. Commun. Algebra 12(3–4), 379–389 (1984)

    MathSciNet  MATH  Google Scholar 

  11. Carter, D., Keller, G.E.: Bounded elementary expressions in \({{\rm SL}}(2,{{\mathscr {O}}})\). Preprint, University of Virginia, 1–11 (1985)

  12. Carter, D., Keller, G.E., Paige, E.: Bounded expressions in \({{\rm SL}}(2,{{\mathscr {O}}})\). Preprint, University of Virginia, 1–21 (1985)

  13. Carter, R.W.: Simple Groups of Lie Type. Pure and Applied Mathematics, vol. 28. Wiley, London (1972)

  14. Carter, R.W., Chen, Y.: Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings. J. Algebra 155(1), 44–94 (1993)

  15. Chang, C.C., Keisler, H.J.: Model Theory. 2nd edn. Studies in Logic and the Foundations of Mathematics, vol. 73. North Holland, Amsterdam (1977)

  16. Cohn, P.M.: On the structure of the \({{\rm GL}}_2\) of a ring. Inst. Hautes Études Sci. Publ. Math. 30, 5–53 (1966)

    Google Scholar 

  17. Cooke, G.E.: A weakening of the Euclidean property for integral domains and applications to algebraic number theory. I. J. Reine Angew. Math. 282, 133–156 (1976)

    MathSciNet  MATH  Google Scholar 

  18. Cooke, G.E.: A weakening of the Euclidean property for integral domains and applications to algebraic number theory. II. J. Reine Angew. Math. 283(284), 71–85 (1976)

    MathSciNet  MATH  Google Scholar 

  19. Cooke, G., Weinberger, P.J.: On the construction of division chains in algebraic number rings, with applications to \({{\rm SL}}_2\). Commun. Algebra 3, 481–524 (1975)

    MATH  Google Scholar 

  20. Corvaja, P., Demeio, J., Rapinchuk, A., Ren, J., Zannier, U.: Bounded generation by semi-simple elements: quantitative results (2022). arXiv:2203.00755

  21. Corvaja, P., Rapinchuk, A.S., Ren, J., Zannier, U.M.: Non-virtually abelian anisotropic linear groups are not boundedly generated. Invent. Math. 227(1), 1–26 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Demeyer, J.: Recursively enumerable sets of polynomials over a finite field are Diophantine. Invent. Math. 170(3), 655–670 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Dennis, R.K., Vaserstein, L.N.: On a question of M. Newman on the number of commutators. J. Algebra 118(1), 150–161 (1988)

  24. Dennis, R.K., Vaserstein, L.N.: Commutators in linear groups. \(K\)-Theory 2(6), 761–767 (1989)

  25. Ellers, E.W., Gordeev, N.: On the conjectures of J. Thompson and O. Ore. Trans. Amer. Math. Soc. 350(9), 3657–3671 (1998)

  26. Erovenko, I.V.: \({{\rm SL}}_n(F[x])\) is not boundedly generated by elementary matrices: explicit proof. Electron. J. Linear Algebra 11, 162–167 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Erovenko, I.V., Rapinchuk, A.S.: Bounded generation of \(S\)-arithmetic subgroups of isotropic orthogonal groups over number fields. J. Number Theory 119(1), 28–48 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Ershov, M., Jaikin-Zapirain, A., Kassabov, M.: Property \((T)\) for Groups Graded by Root Systems. Memoirs of the American Mathematical Society, vol. 249(1186). American Mathematical Society, Providence (2017)

  29. Estes, D., Ohm, J.: Stable range in commutative rings. J. Algebra 7, 343–362 (1967)

    MathSciNet  MATH  Google Scholar 

  30. Garland, H.: The arithmetic theory of loop groups. Inst. Hautes Études Sci. Publ. Math. 52, 5–136 (1980)

    MathSciNet  MATH  Google Scholar 

  31. Gvozdevsky, P.: Improved \({K}_1\)-stability for the embedding \(D_5\) into \(E_6\). Commun. Algebra 48(11), 4922–4931 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Gvozdevsky, P.: Bounded reduction of orthogonal matrices over polynomial rings. J. Algebra 602, 300–321 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Hazrat, R., Stepanov, A., Vavilov, N., Zhang, Z.: Commutator width in Chevalley groups. Note Mat. 33(1), 139–170 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press, Cambridge (1993)

  35. Jordan, B.W., Zaytman, Y.: On the bounded generation of arithmetic \({{\rm SL}}_2\). Proc. Natl. Acad. Sci. USA 116(38), 18880–18882 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  37. Kharlampovich, O., Myasnikov, A.: What does a group algebra know about a free group. Ann. Pure Appl. Logic 169(6), 523–547 (2018)

  38. Kharlampovich, O., Myasnikov, A., Sohrabi, M.: Rich groups, weak second-order logic, and applications. In: Kharlampovich, O., Sklinos, R. (eds.) Groups and Model Theory, pp. 127–193. de Gruyter, Berlin (2021)

    MATH  Google Scholar 

  39. Lenstra, H.W., Jr.: On Artin’s conjecture and Euclid’s algorithm in global fields. Invent. Math. 42, 201–224 (1977)

    MathSciNet  MATH  Google Scholar 

  40. Liebeck, M.W., O’Brien, E.A., Shalev, A., Tiep, P.H.: The Ore conjecture. J. Eur. Math. Soc. (JEMS) 12(4), 939–1008 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Liebeck, M.W., O’Brien, E.A., Shalev, A., Tiep, P.H.: Commutators in finite quasisimple groups. Bull. London Math. Soc. 43(6), 1079–1092 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Liehl, B.: On the group \({{\rm SL}}_2\) over orders of arithmetic type. J. Reine Angew. Math. 323, 153–171 (1981)

    MathSciNet  MATH  Google Scholar 

  43. Loukanidis, D., Murty, V.K.: Bounded generation for \({{\rm SL}}_n\) (\(n\geqslant 2\)) and \({\rm Sp}_{n}\) (\(n\geqslant 1\)) (1994). Preprint

  44. Luzgarev, A.Yu., Stavrova, A.A.: The elementary subgroup of an isotropic reductive group is perfect. St. Petersburg Math. J. 23(5), 881–890 (2012)

  45. Magurn, B.A.: Algebraic Introduction to \(K\)-Theory. Encyclopedia of Mathematics and its Applications, vol. 87. Cambridge University Press, Cambridege (2002)

  46. Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. Éc. Norm. Sup. 2, 1–62 (1969)

    MATH  Google Scholar 

  47. Milnor, J.: Introduction to Algebraic \(K\)-Theory. Annals of Mathematics Studies, vol. 72. Princeton University Press, Princeton (1971)

  48. Morgan, A.V., Rapinchuk, A.S., Sury, B.: Bounded generation of \({{\rm SL}}_2\) over rings of \(S\)-integers with infinitely many units. Algebra Number Theory 12(8), 1949–1974 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Morris, D.W.: Bounded generation of \({{\rm SL}}(n,A)\) (after D. Carter, G. Keller, and E. Paige). New York J. Math. 13, 383–421 (2007)

  50. Murty, V.K.: Bounded and finite generation of arithmetic groups. In: Dilcher, K. (ed.) Number Theory (Halifax, NS, 1994). CMS Conference Proceedings, vol. 15, pp. 249–261. American Mathematical Society, Providence (1995)

    Google Scholar 

  51. Nica, B.: On bounded elementary generation for \({{\rm SL}}_n\) over polynomial rings. Israel J. Math. 225(1), 403–410 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Nies, A.: Separating classes of groups by first-order sentences. Internat. J. Algebra Comput. 13(3), 287–302 (2003)

    MathSciNet  MATH  Google Scholar 

  53. Oger, F., Sabbagh, G.: Quasi-finitely axiomatizable nilpotent groups. J. Group Theory 9(1), 95–106 (2006)

    MathSciNet  MATH  Google Scholar 

  54. O’Meara, O.T.: On the finite generation of linear groups over Hasse domains. J. Reine Angew. Math. 217, 79–108 (1965)

    MathSciNet  MATH  Google Scholar 

  55. Peterson, D.H., Kac, V.G.: Infinite flag varieties and conjugacy theorems. Proc. Nat. Acad. Sci. USA 80(6), 1778–1782 (1983)

    MathSciNet  MATH  Google Scholar 

  56. Platonov, V.P., Rapinchuk, A.S.: Abstract properties of \(S\)-arithmetic groups and the congruence problem. Russ. Acad. Sci. Izv. Math. 40(3), 455–476 (1993)

    MathSciNet  MATH  Google Scholar 

  57. Plotkin, E.B.: Surjective stabilization for \(K_1\)-functor for some exceptional Chevalley groups. J. Soviet Math. 64(1), 751–766 (1993)

    MathSciNet  Google Scholar 

  58. Plotkin, E.: On the stability of the \({\mathscr {K}}_1\)-functor for Chevalley groups of type \({ E}_7\). J. Algebra 210(1), 67–85 (1998)

    MathSciNet  MATH  Google Scholar 

  59. Queen, C.: Some arithmetic properties of subrings of function fields over finite fields. Arch. Math. (Basel) 26, 51–56 (1975)

    MathSciNet  MATH  Google Scholar 

  60. Rapinchuk, A.S.: The congruence subgroup problem for arithmetic groups of finite width. Soviet Math. Dokl. 42(2), 664–668 (1991)

    MathSciNet  MATH  Google Scholar 

  61. Rapinchuk, A.S.: Representations of groups of finite width. Soviet Math. Dokl. 42(3), 816–820 (1991)

    MathSciNet  MATH  Google Scholar 

  62. Roquette, P.: Class field theory in characteristic \(p\), its origin and development. In: Miyake, K. (ed.) Class Field Theory-its Centenary and Prospect (Tokyo, 1998). Advanced Studies in Pure Mathematics, vol. 30, pp. 549–631. Mathematical Society of Japan, Tokyo (2001)

    MATH  Google Scholar 

  63. Rosen, M.: Number Theory in Function Fields. Graduate Texts in Mathematics, vol. 210. Springer, New York (2002)

  64. Segal, D., Tent, K.: Defining \(R\) and \(G(R)\), J. Europ. Math. Soc. https://doi.org/10.4171/JEMS/1255. arXiv:2004.13407

  65. Sinchuk, S., Smolensky, A.: Decompositions of congruence subgroups of Chevalley groups. Internat. J. Algebra Comput. 28(6), 935–958 (2018)

    MathSciNet  MATH  Google Scholar 

  66. Sivatski, A., Stepanov, A.: On the word length of commutators in \({\rm GL}_n(R)\). \({\mathscr {K}}\)-Theory 17(4), 295–302 (1999)

  67. Smolensky, A.: Commutator width of Chevalley groups over rings of stable rank \(1\). J. Group Theory 22(1), 83–101 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Smolensky, A., Sury, B., Vavilov, N.: Gauss decomposition for Chevalley groups, revisited. Internat. J. Group Theory 1(1), 3–16 (2011)

    MathSciNet  MATH  Google Scholar 

  69. Sohrabi, M., Myasnikov, A.G.: Bi-interpretability with \({ Z}\) and models of the complete elementary theories of \(SL_n({\mathscr {O}})\), \(T_n({\mathscr {O}})\) and \({\rm GL}_n({\mathscr {O}})\), \(n\geqslant 3\) (2020). arXiv:2004.03585

  70. StackExchange discussion. https://math.stackexchange.com/questions/2690954/laurent-series-of-root-of-polynomials

  71. Stein, M.R.: Generators, relations, and coverings of Chevalley groups over commutative rings. Amer. J. Math. 93, 965–1004 (1971)

    MathSciNet  MATH  Google Scholar 

  72. Stein, M.R.: Surjective stability in dimension 0 for \(K_2\) and related functors. Trans. Amer. Math. Soc. 178, 165–191 (1973)

    MathSciNet  MATH  Google Scholar 

  73. Stein, M.R.: Stability theorems for \({\mathscr {K}}_1\), \({\mathscr {K}}_2\) and related functors modeled on Chevalley groups. Japan J. Math. (N.S.) 4(1), 77–108 (1978)

  74. Steinberg, R.: Générateurs, relations et revêtements de groupes algébriques. In: Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), pp. 113–127. Librairie Universitaire, Louvain (1962)

  75. Steinberg, R.: Lectures on Chevalley Groups. University Lecture Series, vol. 66. American Mathematical Society, Providence (2016)

  76. Stepanov, A.: Structure of Chevalley groups over rings via universal localization. J. Algebra 450, 522–548 (2016)

    MathSciNet  MATH  Google Scholar 

  77. Stepanov, A., Vavilov, N.: On the length of commutators in Chevalley groups. Israel J. Math. 185, 253–276 (2011)

    MathSciNet  MATH  Google Scholar 

  78. Tavgen, O.I.: Bounded generation of Chevalley groups over rings of algebraic \(S\)-integers. Math. USSR-Izv. 36(1), 101–128 (1991)

    MathSciNet  MATH  Google Scholar 

  79. Thompson, R.C.: Commutators in special and general linear groups. Trans. Amer. Math. Soc. 101, 16–33 (1961)

    MathSciNet  MATH  Google Scholar 

  80. Tits, J.: Uniqueness and presentation of Kac–Moody groups over fields. J. Algebra 105(2), 542–573 (1987)

    MathSciNet  MATH  Google Scholar 

  81. Trost, A.A.: Bounded generation by root elements for Chevalley groups defined over rings of integers of function fields with an application in strong boundedness (2021). arXiv:2108.12254

  82. Trost, A.A.: Elementary bounded generation for \({{\rm SL}}_n\) for global function fields and \(n\geqslant 3\) (2022). arXiv:2206.13958

  83. van der Kallen, W.: \({{\rm SL}}_3({\mathbb{C} }[X])\) does not have bounded word length. In: Dennis, R.K. (ed.) Algebraic K-theory, Part I (Oberwolfach 1980). Lecture Notes Mathematics, vol. 966, pp. 357–361. Springer, Berlin (1982)

    Google Scholar 

  84. Vaserstein, L.N.: Bounded reduction of invertible matrices over polynomial rings by addition operations. Preprint, Pennsylvania State University (2006). http://www.personal.psu.edu/lxv1/pm2.pdf

  85. Vaserstein, L.N.: Polynomial parametrization for the solution of Diophantine equations and arithmetic groups. Ann. Math. 171(2), 979–1009 (2010)

    MathSciNet  MATH  Google Scholar 

  86. Vaserstein, L.N., Wheland, E.: Commutators and companion matrices over rings of stable rank \(1\). Linear Algebra Appl. 142, 263–277 (1990)

    MathSciNet  MATH  Google Scholar 

  87. Vavilov, N.: Structure of Chevalley groups over commutative rings. In: Yamaguti, K., Kawamoto, N. (eds.) Nonassociative Algebras and Related Topics (Hiroshima, 1990), pp. 219–335. World Scientific Publishing, River Edge (1991)

    Google Scholar 

  88. Vavilov, N., Plotkin, E.: Chevalley groups over commutative rings. I: Elementary calculations. Acta Appl. Math. 45(1), 73–113 (1996)

  89. Vavilov, N.A., Smolensky, A.V., Sury, B.: Unitriangular factorizations of Chevalley groups. J. Math. Sci. (N.Y.) 183(5), 584–599 (2012)

  90. Vsemirnov, M.: Short unitriangular factorizations of \({{\rm SL}}_2({\mathbb{Z} }[1/p])\). Q. J. Math. 65(1), 279–290 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Very special thanks go to Inna Capdeboscq. This paper started jointly with her as a discussion of the bounded commutator width of various classes of Kac–Moody groups over finite fields, and for a long time it was supposed to be a work of four authors. Our sincere thanks go to Nikolai Gordeev, Olga Kharlampovich, Jun Morita, Alexei Myasnikov, Denis Osipov, Alexei Stepanov, and Igor Zhukov for useful discussions regarding various aspects of this work. We thank the referees for careful reading and meticulous remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Plotkin.

Additional information

In memory of Irina Suprunenko, our dear friend and colleague.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of Boris Kunyavskiĭ and Eugene Plotkin was supported by the ISF Grants 1623/16 and 1994/20. Nikolai Vavilov thanks the “Basis” Foundation Grant N. 20-7-1-27-1 “Higher Symbols in Algebraic K-Theory”

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunyavskiĭ, B., Plotkin, E. & Vavilov, N. Bounded generation and commutator width of Chevalley groups: function case. European Journal of Mathematics 9, 53 (2023). https://doi.org/10.1007/s40879-023-00627-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40879-023-00627-y

Keywords

Mathematics Subject Classification

Navigation