Skip to main content
Log in

Molecular Dynamics Simulation of FCC Metallic Nanowires: A Review

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Molecular dynamic simulation studies are reviewed to understand the influence of strain rate, temperature, and cross-section size on the mechanical properties of face-centered cubic (FCC) metallic nanowires (MNWs). The yield stress of FCC MNWs is found to be 100 times higher than that of the corresponding bulk metals. The yield strain and fracture stress of MNWs are also found to be significantly higher compared with those of the bulk metals. The influence of deformation mechanisms (slip and twinning) on the mechanical properties of FCC MNWs is discussed. FCC MNWs are found to exhibit novel structural reorientation, phase transformation, elastic recovery, pseudoelasticity, and shape memory effect. MNWs with body-centered cubic (BCC) and hexagonal closed-packed crystal structures are compared with the FCC MNWs. Pseudoelasticity was also observed in BCC MNWs similar to that of FCC MNWs. Dense nano-twin arrays were found in Mg nanowires despite the high twin boundary energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Dresselhaus, Y.-M. Lin, O. Rabin, M. Black, G. Dresselhaus, Springer Handbook of Nanotechnology, ed. B. Bhushan (Berlin, Heidelberg: Springer, 2004), pp.99–146.

  2. C.M. Leiber and Z.L. Wang, MRS Bull. 32, 99 (2007).

    Article  Google Scholar 

  3. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003). doi:10.1002/adma.200390087.

    Article  Google Scholar 

  4. H.S. Park, W. Cai, H.D. Espinosa, and H. Huang, MRS Bull. 34, 178 (2009).

    Article  Google Scholar 

  5. R.C. Cammarata, Prog. Surf. Sci. 46, 1 (1994). doi:10.1016/0079-6816(94)90005-1.

    Article  Google Scholar 

  6. Q.S. Chang, B.K. Tay, X.T. Zeng, S. Li, T.P. Chen, Z. Ji, H.L. Bai, and E.Y. Jiang, J. Phys.: Condens. Matter 14, 7781 (2002).

    Article  Google Scholar 

  7. J. Wan, Y.L. Fan, D.W. Gong, S.G. Shen, and X.Q. Fan, Model. Simul. Mater. Sci. Eng. 7, 189 (1999).

    Article  Google Scholar 

  8. R. Agrawal, B. Peng, E.E. Gdoutos, and H.D. Espinosa, Nano Lett. 8, 3668 (2008). doi:10.1021/nl801724b.

    Article  Google Scholar 

  9. A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, Phys. Rev. B 70, 125113 (2004).

    Article  Google Scholar 

  10. J. Bürki, C.A. Stafford, and D.L. Stein, Phys. Rev. Lett. 95, 090601 (2005).

    Article  Google Scholar 

  11. A. Bietsch and B. Michel, Appl. Phys. Lett. 80, 3346 (2002).

    Article  Google Scholar 

  12. B.A. Glavin, Phys. Rev. Lett. 86, 4318 (2001).

    Article  Google Scholar 

  13. S. Iijima and L.-C. Qin, Science 296, 611 (2002). doi:10.1126/science.296.5568.611a.

    Article  Google Scholar 

  14. M. Kawamura, N. Paul, V. Cherepanov, and B. Voigtländer, Phys. Rev. Lett. 91, 096102 (2003).

    Article  Google Scholar 

  15. Y. Kondo and K. Takayanagi, Science 289, 606 (2000). doi:10.1126/science.289.5479.606.

    Article  Google Scholar 

  16. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, and J.R. Heath, Science 300, 112 (2003). doi:10.1126/science.1081940.

    Article  Google Scholar 

  17. N. Agraït, G. Rubio, and S. Vieira, Phys. Rev. Lett. 74, 3995 (1995).

    Article  Google Scholar 

  18. D. Brown and J.H.R. Clarke, Macromolecules 24, 2075 (1991). doi:10.1021/ma00008a056.

    Article  Google Scholar 

  19. C.F. Fan, T. Cagin, Z.M. Chen, and K.A. Smith, Macromolecules 27, 2383 (1994). doi:10.1021/ma00087a004.

    Article  Google Scholar 

  20. D. Rigby and R.J. Roe, Macromolecules 23, 5312 (1990). doi:10.1021/ma00228a002.

    Article  Google Scholar 

  21. G. Schmidt and M.M. Malwitz, Curr. Opin. Colloid Interface Sci. 8, 103 (2003). doi:10.1016/s1359-0294(03)00008-6.

    Article  Google Scholar 

  22. D. Bassolino, H. Alper, and T.R. Stouch, Drug Des. Discov. 13, 135 (1996).

    Google Scholar 

  23. D. Bemporad, C. Luttmann, and J.W. Essex, Biophys. J. 87, 1 (2004).

    Article  Google Scholar 

  24. B. Nagireddy and Y.J. Lin, ASME Conf. Proc. 2009, 301 (2009).

    Google Scholar 

  25. D. Pinisetty, D. Moldovan, and R. Devireddy, Ann. Biomed. Eng. 34, 1442 (2006). doi:10.1007/s10439-006-9148-y.

    Article  Google Scholar 

  26. R.W. Tejwani, “Experimental and Molecular Dynamics Simulation Studies of Partioning and Transport Across Lipid Bilayer Membranes” (Ph.D. thesis, Pharmacy University of Kentucky, Lexington, KY, 2009).

  27. L. Dai, W.C.D. Cheong, C.H. Sow, C.T. Lim, and V.B.C. Tan, Langmuir 26, 1165 (2009). doi:10.1021/la9022739.

    Article  Google Scholar 

  28. G. Julien, G. Julien, and B. Sandrine, Model. Simul. Mater. Sci. Eng. 19, 074003 (2011).

    Article  Google Scholar 

  29. K. Kang and W. Cai, Philos. Mag. 87, 2169 (2007).

    Article  Google Scholar 

  30. J.D. Monk, “Study of Nanowires Using Molecular Dynamics Simulations” (Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2007).

  31. S.J.V. Frankland, V.M. Harik, G.M. Odegard, D.W. Brenner, and T.S. Gates, Compos. Sci. Technol. 63, 1655 (2003). doi:10.1016/s0266-3538(03)00059-9.

    Article  Google Scholar 

  32. P.-H. Lin and R. Khare, Macromolecules 42, 4319 (2009). doi:10.1021/ma9004007.

    Article  Google Scholar 

  33. V. Varshney, S.S. Patnaik, A.K. Roy, and B.L. Farmer, Macromolecules 41, 6837 (2008). doi:10.1021/ma801153e.

    Article  Google Scholar 

  34. R. Zhu, E. Pan, and A.K. Roy, Mater. Sci. Eng. A 447, 51 (2007). doi:10.1016/j.msea.2006.10.054.

    Article  Google Scholar 

  35. G.D. Smith, D. Bedrov, L. Li, and O. Byutner, J. Chem. Phys. 117, 9478 (2002). http://www.nature.com/nmat/journal/v2/n10/suppinfo/nmat977_S1.html.

  36. J. Diao, K. Gall, and M.L. Dunn, Nat. Mater. 2, 656 (2003).

    Article  Google Scholar 

  37. J. Diao, K. Gall, and M.L. Dunn, Phys. Rev. B 70, 075413 (2004).

    Article  Google Scholar 

  38. J. Lao and D. Moldovan, Appl. Phys. Lett. 93, 093108 (2008).

    Article  Google Scholar 

  39. W. Liang and M. Zhou, Phys. Rev. B 73, 115409 (2006).

    Article  Google Scholar 

  40. W. Liang, M. Zhou, and F. Ke, Nano Lett. 5, 2039 (2005). doi:10.1021/nl0515910.

    Article  Google Scholar 

  41. H.S. Park, K. Gall, and J.A. Zimmerman, Phys. Rev. Lett. 95, 255504 (2005).

    Article  Google Scholar 

  42. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Atlanta, GA: Academic Press, 2001).

    Google Scholar 

  43. M.S. Daw and M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  Google Scholar 

  44. M.S. Daw, S.M. Foiles, and M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993). doi:10.1016/0920-2307(93)90001-u.

    Article  Google Scholar 

  45. M.I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  Google Scholar 

  46. E.Z. da Silva, A.J.R. da Silva, and A. Fazzio, Phys. Rev. Lett. 87, 256102 (2001).

    Article  Google Scholar 

  47. J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Acta Mater. 54, 643 (2006). doi:10.1016/j.actamat.2005.10.008.

    Article  Google Scholar 

  48. K. Gall, J. Diao, and M.L. Dunn, Nano Lett. 4, 2431 (2004). doi:10.1021/nl048456s.

    Article  Google Scholar 

  49. S.J.A. Koh and H.P. Lee, Nanotechnology 17, 3451 (2006).

    Article  Google Scholar 

  50. W. Liang, D.J. Srolovitz, and M. Zhou, J. Mech. Phys. Solids 55, 1729 (2007). doi:10.1016/j.jmps.2007.01.001.

    Article  MathSciNet  MATH  Google Scholar 

  51. H.S. Park, K. Gall, and J.A. Zimmerman, J. Mech. Phys. Solids 54, 1862 (2006). doi:10.1016/j.jmps.2006.03.006.

    Article  MATH  Google Scholar 

  52. B. Wu, A. Heidelberg, and J.J. Boland, Nat. Mater. 4, 525 (2005). http://www.nature.com/nmat/journal/v4/n7/suppinfo/nmat1403_S1.html.

  53. S.J.A. Koh, H.P. Lee, C. Lu, and Q.H. Cheng, Phys. Rev. B 72, 085414 (2005). doi:10.1080/14786430701280943.

    Article  Google Scholar 

  54. W. Liang and M. Zhou, Proc. Inst. Mech. Eng. C 218, 599 (2004). doi:10.1016/j.commatsci.2007.05.012.

    Article  Google Scholar 

  55. H.S. Park and J.A. Zimmerman, Phys. Rev. B 72, 054106 (2005). doi:10.1016/j.commatsci.2009.02.015.

    Article  Google Scholar 

  56. H.A. Wu, A.K. Soh, X.X. Wang, and Z.H. Sun, Key Eng. Mater. 261, 33 (2004).

    Article  Google Scholar 

  57. Y.-H. Wen, Z.-Z. Zhu, and R.-Z. Zhu, Comput. Mater. Sci. 41, 553 (2008). doi:10.1243/095440604774202231.

    Article  Google Scholar 

  58. A. Cao and E. Ma, Acta Mater. 56, 4816 (2008).

    Article  Google Scholar 

  59. E. Rabkin, H.S. Nam, and D.J. Srolovitz, Acta Mater. 55, 2085 (2007).

    Article  Google Scholar 

  60. H.A. Wu, Mech. Res. Commun. 33, 9 (2006). doi:10.1016/j.actamat.2008.05.044.

    Article  MATH  Google Scholar 

  61. P.Z. Coura, S.B. Legoas, A.S. Moreira, F. Sato, V. Rodrigues, S.O. Dantas, D. Ugarte, and D.S. Galvão, Nano Lett. 4, 1187 (2004). doi:10.1016/j.actamat.2006.10.058.

    Article  Google Scholar 

  62. E.B. Tadmor and N. Bernstein, J. Mech. Phys. Solids 52, 2507 (2004). doi:10.1016/j.mechrescom.2005.05.012.

    Article  MATH  Google Scholar 

  63. C.R. Weinberger and W. Cai, J. Mater. Chem. 22, 3277 (2012). doi:10.1016/j.actamat.2006.02.006.

    Article  Google Scholar 

  64. K. Gall, J. Diao, M.L. Dunn, M.I. Haftel, N. Bernstein, and M.J. Mehl, J. Eng. Mater. Technol. 127, 417 (2005). doi:10.1021/nl049725h.

    Article  Google Scholar 

  65. O. Gülseren, F. Ercolessi, and E. Tosatti, Phys. Rev. Lett. 80, 3775 (1998). doi:10.1016/j.jmps.2004.05.002.

    Article  Google Scholar 

  66. M.I. Haftel and K. Gall, Phys. Rev. B 74, 035420 (2006).

    Article  Google Scholar 

  67. H.S. Park and C. Ji, Acta Mater. 54, 2645 (2006).

    Article  Google Scholar 

  68. C. Ji and H.S. Park, J. Comput. Theor. Nanosci. 4, 578 (2007).

    Article  Google Scholar 

  69. W. Liang and M. Zhou, J. Eng. Mater. Technol. 127, 423 (2005).

    Article  Google Scholar 

  70. C.D. Barrett, M.A. Tschopp, and H. El Kadiri, Scripta Mater. 66, 666 (2012).

    Article  Google Scholar 

  71. G.P. Zheng, Y.M. Wang, and M. Li, Acta Mater. 53, 3893 (2005). doi:citeulike-article-id:4387623.

    Article  Google Scholar 

  72. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Nat. Mater. 3, 43 (2004). doi:10.1016/j.scriptamat.2012.01.034.

    Article  Google Scholar 

  73. Y. Zhu, X. Liao, and X. Wu, JOM 60 (9), 60 (2008). doi:10.1016/j.actamat.2005.04.038.

    Article  Google Scholar 

  74. O. Bouaziz, S. Allain, and C. Scott, Scripta Mater. 58, 484 (2008).

    Article  Google Scholar 

  75. H. El Kadiri and A.L. Oppedal, J. Mech. Phys. Solids 58, 613 (2010). doi:10.1007/s11837-008-0120-1.

    Article  Google Scholar 

  76. D. Kuhlmann-Wilsdorf, Phys. Status Solidi A 47, 639 (1978). doi:10.1016/j.scriptamat.2007.10.050.

    Article  Google Scholar 

  77. N. Munroe, X. Tan, and H. Gu, Scripta Mater. 36, 1383 (1997). doi:10.1016/j.jmps.2009.12.004.

    Article  Google Scholar 

  78. H. Van Swygenhoven, P.M. Derlet, and A.G. Froseth, Nat. Mater. 3, 399 (2004). doi:10.1002/pssa.2210470235.

    Article  Google Scholar 

  79. M.H. Yoo, Metall. Trans. A 12A, 409 (1981). doi:10.1016/s1359-6462(97)00048-1.

    Google Scholar 

  80. X.L. Wu, K.M. Youssef, C.C. Koch, S.N. Mathaudhu, L.J. Kecskés, and Y.T. Zhu, Scripta Mater. 64, 213 (2011).

    Article  Google Scholar 

  81. Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor, Nano Lett. 12, 887 (2012).

    Article  Google Scholar 

  82. S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, and T. Lookman, Phys. Rev. B 81, 245433 (2010). doi:10.1016/j.scriptamat.2010.10.024.

    Article  Google Scholar 

  83. A. Cao, J. Appl. Phys. 108, 113531 (2010).

    Article  Google Scholar 

  84. X. Li, W. Hu, S. Xiao, and W.-Q. Huang, Physica E 43, 1131 (2011).

    Article  Google Scholar 

  85. C.M. Leiber, MRS Bull. 28, 486 (2003).

    Article  Google Scholar 

  86. A. Heidelberg, L.T. Ngo, B. Wu, M.A. Phillips, S. Sharma, T.I. Kamins, J.E. Sader, and J.J. Boland, Nano Lett. 6, 1101 (2006). doi:10.1016/j.physe.2011.01.017.

    Article  Google Scholar 

  87. E.C.C.M. Silva, L. Tong, S. Yip, and K.J. Van Vliet, Small 2, 239 (2006).

    Article  Google Scholar 

  88. C. Ji and H.S. Park, Appl. Phys. Lett. 89, 181916 (2006). doi:10.1021/nl060028u.

    Article  Google Scholar 

  89. W. Liang and M. Zhou, Philos. Mag. 87, 2191 (2007). doi:10.1002/smll.200500311.

    Article  Google Scholar 

  90. Z. Yang, Z. Lu, and Y.-P. Zhao, Comput. Mater. Sci. 46, 142 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Office of Naval Research under Grant N00014-10-1-0988 with Dr. Yapa D.S. Rajapakse as the program manager. Dr. Dorel Moldovan from Louisiana State University and Dr. Rakesh Behera from Georgia Institute of Technology are acknowledged for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Lao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lao, J., Naghdi Tam, M., Pinisetty, D. et al. Molecular Dynamics Simulation of FCC Metallic Nanowires: A Review. JOM 65, 175–184 (2013). https://doi.org/10.1007/s11837-012-0465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0465-3

Keywords

Navigation