Skip to main content
Log in

Deformation response of high entropy alloy nanowires

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports atomistic simulation studies of tensile and compressive behavior of nanowires of a model quinary high entropy face-centered cubic (FCC) alloy. The simulations employ empirical interatomic potentials and use massively parallel molecular dynamics techniques at the atomistic level to study the deformation mechanisms. The studies consider pristine cylindrical nanowires oriented along various crystallographic directions. The focus is the role that local composition fluctuations in the random alloy plays in the deformation response. The deformation behavior observed for the complex random alloy is compared with a corresponding “average atom” material that has the same average properties but no local compositional fluctuations. In all cases, deformation is governed by dislocations emitted from the free surface. Twinning was also found, depending on the crystallographic orientation and loading mode. We show that for all orientations, the high entropy alloy (HEA) wires show the onset of plasticity at lower stress levels than the average atom material. However, after the onset of plasticity, the HEA presents a higher strength, mostly driven by the fact that the dislocations emitted from the surface do not glide as easily in the random alloy as they do in the average atom material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Park HS, Cai W, Espinosa HD, Huang HC (2009) Mechanics of Crystalline Nanowires. Mrs. Bulletin 34:178. https://doi.org/10.1557/mrs2009.49

    Article  CAS  Google Scholar 

  2. Froseth AG, Derlet PM, Van Swygenhoven H (2005) Twinning in nanocrystalline fcc metals. Adv Eng Mater 7:16. https://doi.org/10.1002/adem.200400163

    Article  CAS  Google Scholar 

  3. Hyde B, Espinosa HD, Farkas D (2005) An atomistic investigation of elastic and plastic properties of Au nanowires. Jom 57:62. https://doi.org/10.1007/s11837-005-0118-x

    Article  CAS  Google Scholar 

  4. Jennings AT, Weinberger CR, Lee SW, Aitken ZH, Meza L, Greer JR (2013) Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Mater 61:2244. https://doi.org/10.1016/j.actamat.2012.12.044

    Article  CAS  Google Scholar 

  5. Jiang JW, Leach AM, Gall K, Park HS, Rabczuk T (2013) A surface stacking fault energy approach to predicting defect nucleation in surface-dominated nanostructures. J Mech Phys Solids 61:1915. https://doi.org/10.1016/j.jmps.2013.04.008

    Article  CAS  Google Scholar 

  6. Kim H-K, Kim S-H, Ahn J-P, Lee J-C (2018) Deformation criterion for face-centered-cubic metal nanowires. Mater Sci Eng, A 736:431. https://doi.org/10.1016/j.msea.2018.08.108

    Article  CAS  Google Scholar 

  7. Monk J, Farkas D (2007) Tension-compression asymmetry and size effects in nanocrystalline Ni nanowires. Phil Mag 87:2233. https://doi.org/10.1080/14786430701361404

    Article  CAS  Google Scholar 

  8. Mordehai D, David O, Kositski R (2018) Nucleation-controlled plasticity of metallic nanowires and nanoparticles. Adv Mater. https://doi.org/10.1002/adma.201706710

    Article  Google Scholar 

  9. Park HS, Gall K, Zimmerman JA (2006) Deformation of FCC nanowires by twinning and slip. J Mech Phys Solids 54:1862. https://doi.org/10.1016/j.jmps.2006.03.006

    Article  CAS  Google Scholar 

  10. Roos B, Kapelle B, Richter G, Volkert CA (2014) Surface dislocation nucleation controlled deformation of Au nanowires. Appl Phys Lett. https://doi.org/10.1063/1.4902313

    Article  Google Scholar 

  11. Weinberger CR, Cai W (2012) Plasticity of metal nanowires. J Mater Chem 22:3277. https://doi.org/10.1039/c2jm13682a

    Article  CAS  Google Scholar 

  12. Rabkin E, Srolovitz DJ (2007) Onset of plasticity in gold nanopillar compression. Nano Lett 7:101. https://doi.org/10.1021/nl0622350

    Article  CAS  Google Scholar 

  13. Muskeri S, Choudhuri D, Jannotti PA et al (2020) Ballistic impact response of Al0. 1CoCrFeNi high-entropy alloy. Adv Eng Mater 22:2000124. https://doi.org/10.1002/adem.202000124

    Article  CAS  Google Scholar 

  14. Muskeri S, Hasannaeimi V, Salloom R, Sadeghilaridjani M, Mukherjee S (2020) Small-scale mechanical behavior of a eutectic high entropy alloy. Sci Rep 10:1. https://doi.org/10.1038/s41598-020-59513-2

    Article  CAS  Google Scholar 

  15. Zhang Y, Zuo TT, Tang Z et al (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  16. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345:1153. https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  17. Gludovatz B, George EP, Ritchie RO (2015) Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy. Jom 67:2262. https://doi.org/10.1007/s11837-015-1589-z

    Article  CAS  Google Scholar 

  18. Ding J, Asta M, Ritchie RO (2018) Melts of CrCoNi-based high-entropy alloys: Atomic diffusion and electronic/atomic structure from ab initio simulation. Appl Phys Lett 113:111902. https://doi.org/10.1063/1.5045216

    Article  CAS  Google Scholar 

  19. Ding J, Yu Q, Asta M, Ritchie RO (2018) Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc Natl Acad Sci USA 115:8919. https://doi.org/10.1073/pnas.1808660115

    Article  CAS  Google Scholar 

  20. Li ZZ, Zhao ST, Ritchie RO, Meyers MA (2019) Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci 102:296. https://doi.org/10.1016/j.pmatsci.2018.12.003

    Article  CAS  Google Scholar 

  21. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  22. Macdonald BE, Fu Z, Zheng B et al (2017) Recent Progress in High Entropy Alloy Research. Jom 69:2024. https://doi.org/10.1007/s11837-017-2484-6

    Article  Google Scholar 

  23. Cantor B, Chang I, Knight P, Vincent A (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng, A 375:213. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  24. Otto F, Yang Y, Bei H, George EP (2013) Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater 61:2628. https://doi.org/10.1016/j.actamat.2013.01.042

    Article  CAS  Google Scholar 

  25. Basu I, De Hosson JM (2020) High entropy alloys: ready to set sail? Metals 10:194. https://doi.org/10.3390/met10020194

    Article  CAS  Google Scholar 

  26. Varvenne C, Luque A, N W., WA Curtin, (2016) Average-atom interatomic potential for random alloys. Physical Review B B 93:104201. https://doi.org/10.1103/PhysRevB.93.104201

    Article  CAS  Google Scholar 

  27. Farkas D, Caro A (2018) Model interatomic potentials and lattice strain in a high-entropy alloy. J Mater Res 33:3218. https://doi.org/10.1557/jmr.2018.245

    Article  CAS  Google Scholar 

  28. Pasianot R, Farkas D (2020) Atomistic modeling of dislocations in a random quinary high-entropy alloy. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2019.109366

    Article  Google Scholar 

  29. Choi W-M, Jo YH, Sohn SS, Lee S, Lee B-J (2018) Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. Npj Comput Mater 4:1. https://doi.org/10.1038/s41524-017-0060-9

    Article  CAS  Google Scholar 

  30. Daw MS, Baskes MI (1984) Embedded-atom method - derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443. https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  Google Scholar 

  31. Jian W-R, Xie Z, Xu S, Su Y, Yao X, Beyerlein IJ (2020) Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater 199:352. https://doi.org/10.1016/j.actamat.2020.08.044

    Article  CAS  Google Scholar 

  32. Xu S, Hwang E, Jian W-R, Su Y, Beyerlein IJ (2020) Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys. Intermetallics 124:106844. https://doi.org/10.1016/j.intermet.2020.106844

    Article  CAS  Google Scholar 

  33. Guo S, Hu Q, Ng C, Liu CT (2013) More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41:96. https://doi.org/10.1016/j.intermet.2013.05.002

    Article  CAS  Google Scholar 

  34. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393. https://doi.org/10.1103/PhysRevB.59.3393

    Article  CAS  Google Scholar 

  35. Farkas D (2020) Grain boundary structure in high-entropy alloys. J Mater Sci 55:9173. https://doi.org/10.1007/s10853-020-04387-y

    Article  CAS  Google Scholar 

  36. Deluigi O, Pasianot R, Valencia F, Caro A, Farkas D, Bringa E (2021) Simulations of primary damage in a high entropy alloy: probing enhanced radiation resistance. Acta Mater 213:116951. https://doi.org/10.1016/j.actamat.2021.116951

    Article  CAS  Google Scholar 

  37. Liu J (2020) Molecular dynamic study of temperature dependence of mechanical properties and plastic inception of CoCrCuFeNi high-entropy alloy. Phys Lett A 384:126516. https://doi.org/10.1016/j.physleta.2020.126516

    Article  CAS  Google Scholar 

  38. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52:7182. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  39. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  40. Shinoda W, Shiga M, Mikami M (2004) Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B 69:134103. https://doi.org/10.1103/PhysRevB.69.134103

    Article  CAS  Google Scholar 

  41. Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302. https://doi.org/10.1103/PhysRevB.17.1302

    Article  CAS  Google Scholar 

  42. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  43. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sc. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  44. Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sc. https://doi.org/10.1088/0965-0393/18/8/085001

    Article  Google Scholar 

  45. Honeycutt JD, Andersen HC (1987) Molecular-dynamics study of melting and freezing of small lennard-jones clusters. J Phys Chem-Us 91:4950. https://doi.org/10.1021/j100303a014

    Article  CAS  Google Scholar 

  46. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sc. https://doi.org/10.1088/0965-0393/20/4/045021

    Article  Google Scholar 

  47. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sc. https://doi.org/10.1088/0965-0393/20/8/085007

    Article  Google Scholar 

  48. Van Swygenhoven H, Derlet P, Hasnaoui A (2002) Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys Rev B 66:024101. https://doi.org/10.1103/PhysRevB.66.024101

    Article  CAS  Google Scholar 

  49. Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Competing plastic deformation mechanisms in nanophase metals. Phys Rev B 60:22. https://doi.org/10.1103/PhysRevB.60.22

    Article  Google Scholar 

  50. Van Swygenhoven H, Derlet P, Frøseth A (2006) Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater 54:1975. https://doi.org/10.1016/j.actamat.2005.12.026

    Article  CAS  Google Scholar 

  51. Smith L, Farkas D (2018) Connecting interatomic potential characteristics with deformation response in FCC materials. Comput Mater Sci 147:18. https://doi.org/10.1016/j.commatsci.2018.01.055

    Article  CAS  Google Scholar 

  52. Stukowski A, Albe K, Farkas D (2010) Nanotwinned fcc metals: Strengthening versus softening mechanisms. Phys Rev B 82:224103. https://doi.org/10.1103/PhysRevB.82.224103

    Article  CAS  Google Scholar 

  53. Nöhring WG, Möller JJ, Xie Z, Bitzek E (2016) Wedge-shaped twins and pseudoelasticity in fcc metallic nanowires under bending. Extreme Mechanics Letters 8:140. https://doi.org/10.1016/j.eml.2016.03.001

    Article  Google Scholar 

  54. Van Swygenhoven H, Derlet PM, Frøseth A (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399. https://doi.org/10.1038/nmat1136

    Article  CAS  Google Scholar 

  55. Zimmerman JA, Gao H, Abraham FF (2000) Generalized stacking fault energies for embedded atom FCC metals. Model Simul Mater Sc 8:103. https://doi.org/10.1088/0965-0393/8/2/302

    Article  CAS  Google Scholar 

  56. Siegel DJ (2005) Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Appl Phys Lett 87:121901. https://doi.org/10.1063/1.2051793

    Article  CAS  Google Scholar 

  57. Li W, Fan H, Tang J, Wang Q, Zhang X, El-Awady JA (2019) Effects of alloying on deformation twinning in high entropy alloys. Mater Sci Eng, A 763:138143. https://doi.org/10.1016/j.msea.2019.138143

    Article  CAS  Google Scholar 

  58. Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Mater 94:124. https://doi.org/10.1016/j.actamat.2015.04.014

    Article  CAS  Google Scholar 

  59. Wang YQ, Liu B, Yan K et al (2018) Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction. Acta Mater 154:79. https://doi.org/10.1016/j.actamat.2018.05.013

    Article  CAS  Google Scholar 

  60. Huang S, Huang H, Li W et al (2018) Twinning in metastable high-entropy alloys. Nat Commun 9:1. https://doi.org/10.1038/s41467-018-04780-x

    Article  CAS  Google Scholar 

  61. Tucker GJ, Foiles SM (2015) Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations. Int J Plast 65:191. https://doi.org/10.1016/j.ijplas.2014.09.006

    Article  CAS  Google Scholar 

  62. Larsen PM, Schmidt S, Schiøtz J (2016) Robust structural identification via polyhedral template matching. Model Simul Mater Sc 24:055007. https://doi.org/10.1088/0965-0393/24/5/055007

    Article  CAS  Google Scholar 

  63. Liang H, Upmanyu M, Huang H (2005) Size-dependent elasticity of nanowires: nonlinear effects. Phys Rev B 71:241403. https://doi.org/10.1103/PhysRevB.71.241403

    Article  CAS  Google Scholar 

  64. Diao J, Gall K, Dunn ML (2004) Atomistic simulation of the structure and elastic properties of gold nanowires. J Mech Phys Solids 52:1935. https://doi.org/10.1016/j.jmps.2004.03.009

    Article  CAS  Google Scholar 

  65. Gall K, Diao J, Dunn ML (2004) The strength of gold nanowires. Nano Lett 4:2431. https://doi.org/10.1021/nl048456s

    Article  CAS  Google Scholar 

  66. McDowell MT, Leach AM, Gall K (2008) On the elastic modulus of metallic nanowires. Nano Lett 8:3613. https://doi.org/10.1021/nl801526c

    Article  CAS  Google Scholar 

  67. Wu Z, Zhang Y, Jhon M, Greer J, Srolovitz D (2013) Nanostructure and surface effects on yield in Cu nanowires. Acta Mater 61:1831. https://doi.org/10.1016/j.actamat.2012.11.053

    Article  CAS  Google Scholar 

  68. Diao J, Gall K, Dunn ML, Zimmerman JA (2006) Atomistic simulations of the yielding of gold nanowires. Acta Mater 54:643. https://doi.org/10.1016/j.actamat.2005.10.008

    Article  CAS  Google Scholar 

  69. Li W, Rao SI, Wang Q, Fan H, Yang J, El-Awady JA (2020) Core structure and mobility of edge dislocations in face-centered-cubic chemically complex NiCoFe and NiCoFeCu equiatomic solid-solution alloys. Materialia 9:2589. https://doi.org/10.1016/j.mtla.2020.100628

    Article  CAS  Google Scholar 

  70. Varvenne C, Leyson GPM, Ghazisaeidi M, Curtin WA (2017) Solute strengthening in random alloys. Acta Mater 124:660. https://doi.org/10.1016/j.actamat.2016.09.046

    Article  CAS  Google Scholar 

  71. Varvenne C, Curtin WA (2017) Strengthening of high entropy alloys by dilute solute additions: CoCrFeNiAlx and CoCrFeNiMnAlx alloys. Scripta Mater 138:92. https://doi.org/10.1016/j.scriptamat.2017.05.035

    Article  CAS  Google Scholar 

  72. Nohring WG, Curtin WA (2017) Dislocation cross-slip in fcc solid solution alloys. Acta Mater 128:135. https://doi.org/10.1016/j.actamat.2017.02.027

    Article  CAS  Google Scholar 

  73. Varvenne C, Luque A, Curtin WA (2016) Theory of strengthening in fcc high entropy alloys. Acta Mater 118:164. https://doi.org/10.1016/j.actamat.2016.07.040

    Article  CAS  Google Scholar 

  74. Meyers MA, Chawla KK (2008) Mechanical behavior of materials. Cambridge University Press

    Book  Google Scholar 

  75. Ji C, Park HS (2006) Geometric effects on the inelastic deformation of metal nanowires. Appl Phys Lett 89:181916. https://doi.org/10.1063/1.2372748

    Article  CAS  Google Scholar 

  76. Cao A, Ma E (2008) Sample shape and temperature strongly influence the yield strength of metallic nanopillars. Acta Mater 56:4816. https://doi.org/10.1016/j.actamat.2008.05.044

    Article  CAS  Google Scholar 

  77. Ding Q, Zhang Y, Chen X et al (2019) Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574:223. https://doi.org/10.1038/s41586-019-1617-1

    Article  CAS  Google Scholar 

  78. Ding Q, Fu X, Chen D et al (2019) Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater Today 25:21. https://doi.org/10.1016/j.mattod.2019.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work (DF) was supported by the National Science Foundation, Division of Materials Research (Grant number 1507846). CJR acknowledges support by SiiP-UNCuyo. The simulations in this paper were run using the LAMMPS software package (lammps.sandia.gov) at TOKO-FCEN-UNCuyo HPC cluster and on a Tesla Titan X Pascal donated by the NVIDIA Corporation. Figures were generated using OVITO (www.ovito.org). The authors thank the anonymous reviewers for their valuable comments.

Funding

This study was funded by NSF, Division of Materials Research (Grant number 1507846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos J. Ruestes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruestes, C.J., Farkas, D. Deformation response of high entropy alloy nanowires. J Mater Sci 56, 16447–16462 (2021). https://doi.org/10.1007/s10853-021-06314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06314-1

Navigation