Skip to main content
Log in

Micro- and nanoscale tensile testing of materials

  • Nanomechanical Characterization
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article reviews concepts and techniques for performing instrumented tensile testing of materials at small dimensions. State-of-the-art methods to probe tensile behavior of micro- and nanoscaled materials span many orders of magnitudes of force and displacement, often requiring a custom solution for each new material discovery. We discuss the experimental opportunities, challenges, and pitfalls in concert with the scientific insights revealed from tensile investigations at length scales where conventional wisdom is challenged on how materials deform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Gogotsi, editor, Nanomaterials Handbook (Oxford, U.K.: Taylor and Francis, Inc., 2006).

    Google Scholar 

  2. K.J. Hemker and W.N. Sharpe, Annual Review of Materials Research, 37(1) (2007), pp. 93–126.

    Article  CAS  Google Scholar 

  3. C.A. Neugebauer, Journal of Applied Physics, 31(6) (1960), pp. 1096–1101.

    Article  ADS  CAS  Google Scholar 

  4. James W. Dally and David T. Read, JMR, 8 (1993), pp. 1542–1549.

    Article  Google Scholar 

  5. W.N. Sharpe, Jr. et al., Micro Electro Mechanical Systems, 1997 (MEMS’ 97) (Piscataway, NJ: IEEE, 1997), pp. 424–429.

    Google Scholar 

  6. K.J. Hemker et al., Journal of Microelectromechanical Systems, 10(3) (2001), pp. 317–326.

    Article  MathSciNet  Google Scholar 

  7. D.S. Gianola et al., Acta Materialia, 54(8) (2006), pp. 2253–2263.

    Article  CAS  Google Scholar 

  8. R.D. Emery and G.L. Povirk, Acta Materialia, 51(7) (2003), pp. 2067–2078.

    Article  CAS  Google Scholar 

  9. W.N. Sharpe et al., unpublished work (2008).

  10. R.L. Edwards, G. Coles, and W.N. Sharpe, Jr., Experimental Mechanics, 44(1) (2004), pp. 49–54.

    Article  CAS  Google Scholar 

  11. C.A. Zorman et al., Journal of Microelectromechanical Systems, 14(4) (2005), pp. 664–672.

    Article  CAS  Google Scholar 

  12. T. Tsuchiya et al., Micro Electro Mechanical Systems, 1997 (MEMS’ 97) (Piscataway, NJ: IEEE, 1997), pp. 529–534.

    Google Scholar 

  13. W.N. Sharpe, K.T. Turner, and R.L. Edwards, Experimental Mechanics, 39(3) (1999), pp. 162–170.

    Article  CAS  Google Scholar 

  14. W.N. Sharpe et al., Proceedings of IMECE 2006, 2006 ASME International Mechanical Engineering Congress and Exposition (New York: ASME, 2006), p. 13290.

    Google Scholar 

  15. W.N. Sharpe et al., Experimental Mechanics, 47(5) (2006), pp. 649–658.

    Article  CAS  Google Scholar 

  16. Ioannis Chasiotis and Wolfgang Knauss, Experimental Mechanics, 42(1) (2002), pp. 51–57.

    Article  CAS  Google Scholar 

  17. S.A.I. Johansson and S. Greek, Micromachined Devices and Components III, Volume 3224 (Bellingham, WA, SPIE, 1997), pp. 344–351.

    Google Scholar 

  18. D.T. Read et al., Scripta Materialia, 45(5) (2001), pp. 583–589.

    Article  CAS  Google Scholar 

  19. G. Coles et al., Mechanical Properties of Structural Films, ed. C.L. Muhlsteom and S.B. Brown (West Conshohocken, PA: ASTM, 2001), pp. 3–15.

    Google Scholar 

  20. B.L. Boyce et al., Journal of Microelectromechanical Systems, 16(2) (2007), pp. 179–190.

    Article  CAS  MathSciNet  Google Scholar 

  21. M.A. Haque and M.T.A. Saif, Scripta Materialia, 47(12) (2002), pp. 863–867.

    Article  CAS  Google Scholar 

  22. Y. Zhu and H.D. Espinosa, Proceedings of the National Academy of Sciences of the United States of America, 102(41) (2005), pp. 14503–14508.

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Y. Zhu, C. Ke, and H.D. Espinosa, Experimental Mechanics, 47(1) (2007), pp. 7–24.

    Article  Google Scholar 

  24. J. Cumings and A. Zettl, Science, 289(5479) (2000), pp. 602–604.

    Article  PubMed  ADS  CAS  Google Scholar 

  25. P. Poncharal et al., Science, 283(5407) (1999), pp. 1513–1516.

    Article  PubMed  ADS  CAS  Google Scholar 

  26. P.A. Williams et al., Applied Physics Letters, 80(14) (2002), pp. 2574–2576.

    Article  ADS  CAS  Google Scholar 

  27. H.W.P. Koops et al., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 33(12B) (1994), pp. 7099–7107.

    CAS  Google Scholar 

  28. F.A. Stevie and L.A. Giannuzzi, editors, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (New York: Springer, 2005).

    Google Scholar 

  29. C.A. Volkert and A.M. Minor, MRS Bulletin, 32(5) (2007), pp. 389–395.

    CAS  Google Scholar 

  30. S. Orso et al., Advanced Materials, 18(7) (2006), pp. 874–877.

    Article  CAS  Google Scholar 

  31. H. Hiroshima et al., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 38(12B) (1999), pp. 7135–7139.

    CAS  MathSciNet  Google Scholar 

  32. D.M. Eigler and E.K. Schweizer, Nature, 344(6266) (1990), pp. 524–526.

    Article  ADS  CAS  Google Scholar 

  33. D. Nyyssonen, L. Landstein, and E. Coombs, Journal of Vacuum Science & Technology B, 9(6) (1991), pp. 3612–3616.

    Article  ADS  Google Scholar 

  34. M. Sitti and H. Hashimoto, Advanced Robotics, 13(4) (1999), pp. 417–436.

    Article  Google Scholar 

  35. M.A. Karymov et al., Single Molecules, 1(2) (2000), pp. 185–192.

    Article  ADS  Google Scholar 

  36. Yu Huang et al., Science, 291(5504) (2001), pp. 630–633.

    Article  PubMed  ADS  CAS  Google Scholar 

  37. D.L. Fan et al., Applied Physics Letters, 85(18) (2004), pp. 4175–4177.

    Article  ADS  CAS  Google Scholar 

  38. Jing Kong et al., Nature, 395(6705) (1998), pp. 878–881.

    Article  CAS  ADS  Google Scholar 

  39. R. He et al., Advanced Materials, 17 (2005), pp. 2098–2102.

    Article  CAS  Google Scholar 

  40. T.E. Buchheit et al., Journal of Materials Science, 38(20) (2003), pp. 4081–4086.

    Article  CAS  Google Scholar 

  41. W.N. Sharpe, B. Yuan, and R.L. Edwards, Journal of Microelectromechanical Systems, 6(3) (1997), pp. 193–198.

    Article  Google Scholar 

  42. E.P.S. Tan and C.T. Lim, Review of Scientific Instruments, 75(8) (2004), pp. 2581–2585.

    Article  CAS  ADS  Google Scholar 

  43. Hiroshi Miyazaki and Kozaburo Hayashi, Biomedical Microdevices, 2(2) (1999), pp. 151–157.

    Article  Google Scholar 

  44. S. Orso, “Structural and Mechanical Investigations of Biological Materials using a Focused Ion Beam Microscope” (Ph.D. thesis, Universität Stuttgart, 2005).

  45. H.D. Espinosa, Y. Zhu, and A. Corigliano, J. Micromech. Microeng., 16 (2006), pp. 242–253.

    Article  CAS  Google Scholar 

  46. A.A. Geisberger et al., Journal of Microelectrome-chanical Systems, 12(4) (2003), pp. 513–523.

    Article  CAS  Google Scholar 

  47. G. Binnig, C.F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56(9) (1986), pp. 930–933.

    Article  PubMed  ADS  Google Scholar 

  48. V. Nickolay et al., Review of Scientific Instruments, 75(7) (2004), pp. 2229–2253.

    Article  CAS  Google Scholar 

  49. K. Kinosita et al., Japanese Journal of Applied Physics, 6 (1967), pp. 42–53.

    Article  ADS  CAS  Google Scholar 

  50. M.F. Yu et al., Science, 287(5453) (2000), pp. 637–640.

    Article  PubMed  ADS  CAS  Google Scholar 

  51. S. Gudlavalleti, B. Gearing, and L. Anand, Experimental Mechanics, 45(5) (2005), pp. 412–419.

    Article  Google Scholar 

  52. G. Richter et al., “Ultra High Strength Single Crystalline Nano-Whiskers Grown by Physical Vapour Deposition” (unpublished work, 2009).

  53. M.A. Haque and M.T.A. Saif, Proceedings of the National Academy of Sciences of the United States of America, 101(17) (2004), pp. 6335–6340.

    Article  PubMed  ADS  CAS  Google Scholar 

  54. J.H. Han and M.T.A. Saif, Review of Scientific Instruments, 77(4) (2006), DOI:10.1063/1.2188368.

  55. Shaoning Lu et al., Review of Scientific Instruments, 75(6) (2004), pp. 2154–2162.

    Article  CAS  ADS  Google Scholar 

  56. S. Rajagopalan and R. Vaidyanathan, JOM, 54(9) (2002), pp. 45–48.

    Article  Google Scholar 

  57. B. Bhushan et al., Philosophical Magazine A, 74 (1996), pp. 1117–1128.

    Article  ADS  CAS  Google Scholar 

  58. S.B. Smith, Y.J. Cui, and C. Bustamante, Science, 271(5250) (1966), pp. 795–799.

    Article  ADS  Google Scholar 

  59. D.G. Grier, Nature, 424(6950) (2003), pp. 810–816.

    Article  PubMed  ADS  CAS  Google Scholar 

  60. M.D. Wang et al., Biophysical Journal, 72(3) (1997), pp. 1335–1346.

    Article  PubMed  CAS  ADS  Google Scholar 

  61. Standard Test Methods for Tension Testing of Metallic Materials (West Conshohocken, PA: ASTM, 2004).

  62. W.N. Sharpe, NASA Technical Memorandum (1989), p. 101638.

  63. Haibo Huang and F. Spaepen, Acta Materialia, 48(12) (2000), pp. 3261–3269.

    Article  CAS  Google Scholar 

  64. K.J. Hemker, B.G. Mendis, and C. Eberl, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 483 (2008), pp. 727–730.

    Google Scholar 

  65. D.S. Gianola et al., Advanced Materials, 20 (2008), pp. 303–308.

    Article  CAS  Google Scholar 

  66. Nicholas Biery, Marc deGraef, and Tresa Pollock, Metallurgical and Materials Transactions A, 34(10) (2003), pp. 2301–2313.

    Article  Google Scholar 

  67. M. Sutton et al., Experimental Mechanics, 47(6) (2007), pp. 775–787.

    Article  MathSciNet  Google Scholar 

  68. M. Sutton et al., Experimental Mechanics, 47(6) (2007), pp. 789–804.

    Article  MathSciNet  Google Scholar 

  69. C. Eberl, D.S. Gianola, and R. Thompson, MatLab Central (Natick, MA: The Mathworks, Inc., 2006), File ID:12413.

    Google Scholar 

  70. J.J. Vlassak and W.D. Nix, JMR, 7 (1992), pp. 3242–3249.

    Article  CAS  Google Scholar 

  71. H.D. Espinosa, B.C. Prorok, and B. Peng, Journal of the Mechanics and Physics of Solids, 52(3) (2004), pp. 667–689.

    Article  ADS  CAS  Google Scholar 

  72. N. André et al., Microelectronic Engineering, 84(11) (2007), pp. 2714–2718.

    Article  CAS  Google Scholar 

  73. M. Hommel and O. Kraft, Acta Materialia, 49(19) (2001), pp. 3935–3947.

    Article  CAS  Google Scholar 

  74. F. Macionczyk and W. Bruckner, Journal of Applied Physics, 86(9) (1999), pp. 4922–4929.

    Article  CAS  ADS  Google Scholar 

  75. Z. Suo et al., Applied Physics Letters, 87(16) (2005), pp. 1–3.

    Google Scholar 

  76. N.S. Lu et al., Applied Physics Letters, 91(22) (2007), p. 221909.

    Article  ADS  CAS  Google Scholar 

  77. M.R. Begley and H. Bart-Smith, International Journal of Solids and Structures, 42(18–19) (2005), pp. 5259–5273.

    Article  MATH  Google Scholar 

  78. J. Bohm et al., Review of Scientific Instruments, 75(4) (2004), pp. 1110–1119.

    Article  CAS  ADS  Google Scholar 

  79. U. Welzel et al., Journal of Applied Crystallography, 38(1) (2005), pp. 1–29.

    Article  CAS  Google Scholar 

  80. P.A. Gruber et al., JMR, 23 (2008), pp. 2406–2419.

    Article  CAS  Google Scholar 

  81. Patric A. Gruber et al., Acta Materialia, 56(8) (2008), pp. 1876–1889.

    Article  CAS  MathSciNet  Google Scholar 

  82. Sven Olliges et al., Acta Materialia, 55(15) (2007), pp. 5201–5210.

    Article  CAS  Google Scholar 

  83. Y. Xiang and J.J. Vlassak, Acta Materialia, 54(20) (2006), pp. 5449–5460.

    Article  CAS  Google Scholar 

  84. L. Nicola et al., J. Mechanics and Physics of Solids, 54(10) (2006), pp. 2089–2110.

    Article  MATH  ADS  Google Scholar 

  85. B.C. Prorok, H.D. Espinosa, and M.A. Fischer, J. Mechanics and Physics of Solids, 51 (2003), pp. 41–67.

    Google Scholar 

  86. Autumn Kellar et al., Nature, 405(6787) (2000), pp. 681–685.

    Article  ADS  CAS  Google Scholar 

  87. Autumn Kellar et al., Proceedings of the National Academy of Sciences of the United States of America, 99(19) (2002), pp. 12252–12256.

    Article  CAS  Google Scholar 

  88. Gerrit Huber et al., Proceedings of the National Academy of Sciences of the United States of America, 102(45) (2005), pp. 16293–16296.

    Article  PubMed  ADS  CAS  Google Scholar 

  89. Gerrit Huber et al., Acta Biomaterialia, 3(4) (2007), pp. 607–610.

    Article  PubMed  Google Scholar 

  90. Ralph Spolenak, Stanislav Gorb, and Eduard Arzt, Acta Biomaterialia, 1(1) (2005), pp. 5–13.

    Article  PubMed  Google Scholar 

  91. Christian Greiner, Ralph Spolenak, and Eduard Arzt, Acta Biomaterialia, 5(2) (2009), pp. 597–606.

    Article  PubMed  Google Scholar 

  92. S.S. Brenner, J. Applied Physics, 27(12) (1956), pp. 1484–1491.

    Article  ADS  CAS  Google Scholar 

  93. S.S. Brenner, J. Applied Physics, 28(9) (1957), pp. 1023–1026.

    Article  ADS  CAS  Google Scholar 

  94. S.S. Brenner, J. Applied Physics, 30(12) (1958), pp. 266–267.

    ADS  Google Scholar 

  95. P.M. Duxburry, Statistical Models for the Fracture of Disordered Media (St. Louis, MO: North-Holland Publishers, 1990), p. 189.

    Google Scholar 

  96. Michael D. Uchic et al., Science, 305(5686) (2004), pp. 986–989.

    Article  PubMed  CAS  ADS  Google Scholar 

  97. Michael D. Uchic and Dennis M. Dimiduk, Materials Science and Engineering A, 400–401(1–2 SUPPL) (2005), pp. 268–278.

    Article  CAS  Google Scholar 

  98. Z.W. Shan et al., Nat. Mater., 7(2) (2008), pp. 115–119.

    Article  PubMed  ADS  CAS  MathSciNet  Google Scholar 

  99. C.A. Volkert and E.T. Lilleodden, Philosophical Magazine, 86(33) (2006), pp. 5567–5579.

    Article  ADS  CAS  Google Scholar 

  100. C.P. Frick et al., Materials Science and Engineering: A, 489(1–2) (2008), pp. 319–329.

    Article  CAS  MathSciNet  Google Scholar 

  101. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Materialia, 53(6) (2005), pp. 1821–1830; “Erratum,” Acta Materialia, 54 (6) (2006), p. 1705.

    Article  CAS  Google Scholar 

  102. Julia R. Greer, Warren C. Oliver, and William D. Nix, Acta Materialia, 53(6) (2005), pp. 1821–1830.

    Article  CAS  Google Scholar 

  103. M. Zaiser et al., Philosophical Magazine, 8(30) (2008), pp. 3861–3874.

    Article  CAS  ADS  Google Scholar 

  104. Steffen Brinckmann, Ju-Young Kim, and Julia R. Greer, Physical Review Letters, 100(15) (2008), p. 155502.

    Article  PubMed  ADS  CAS  Google Scholar 

  105. B.E. Schuster et al., Acta Materialia, 56(18) (2008), pp. 5091–5100.

    Article  CAS  Google Scholar 

  106. Z.W. Shan et al., Physical Review B (Condensed Matter and Materials Physics), 77(15) (2008), p. 155419.

    ADS  MathSciNet  Google Scholar 

  107. C.A. Volkert, A. Donohue, and F. Spaepen, J. Applied Physics, 103(8) (2008), p. 083539.

  108. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy, Acta Materialia, 53(15) (2005), pp. 4065–4077.

    Article  CAS  Google Scholar 

  109. J.R. Greer and W.D. Nix, Physical Review B (Condensed Matter and Materials Physics), 73(24) (2006), p. 245410.

    ADS  Google Scholar 

  110. D. Kiener, W. Grosinger, and G. Dehm, Scripta Materialia, 60(3) (2009), pp. 148–151.

    Article  CAS  Google Scholar 

  111. D. Kiener et al., Acta Materialia, 56(3) (2008), pp. 580–592.

    Article  CAS  Google Scholar 

  112. H. Bei et al., Scripta Materialia, 57(5) (2007), pp. 397–400.

    Article  CAS  Google Scholar 

  113. H. Bei et al., Applied Physics Letters, 91(11) (2007), p. 111915.

    Article  ADS  CAS  Google Scholar 

  114. H. Bei et al., Acta Materialia, 56(17) (2008), pp. 4762–4770.

    Article  CAS  Google Scholar 

  115. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Materialia, 51(19) (2003), pp. 5743–5774.

    Article  CAS  Google Scholar 

  116. M.W. Chen, E. Ma, and K.J. Hemker, Nanomaterials Handbook, ed. Yury Gogotsi (Boca Raton, FL: CRC Press, 2006), pp. 497–531.

    Google Scholar 

  117. D. Wolf et al., Acta Materialia, 53(1) (2005), pp. 1–40.

    Article  CAS  Google Scholar 

  118. M. Legros et al., Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 80(4) (2000), pp. 1017–1026.

    ADS  CAS  Google Scholar 

  119. Zeljka Budrovic et al., Science, 304(5668) (2004), pp. 273–276.

    Article  PubMed  CAS  ADS  Google Scholar 

  120. D. Pan et al., Scripta Materialia, 48(12) (2003), pp. 1581–1586.

    Article  CAS  Google Scholar 

  121. D.S. Gianola et al., Scripta Materialia, 55(7) (2006), pp. 649–652.

    Article  CAS  Google Scholar 

  122. D.S. Gianola et al., Materials Science and Engineering: A, 483–484 (2008), pp. 637–640.

    Article  CAS  Google Scholar 

  123. G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals Thermodynamics, Kinetics, Applications (Boca Raton, FL: CRC Press, 1999).

    Google Scholar 

  124. J.W. Cahn and J.E. Taylor, Acta Materialia, 52(16) (2004), pp. 4887–4898.

    Article  CAS  Google Scholar 

  125. J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Materialia, 54(19) (2006), pp. 4953–4975.

    Article  CAS  Google Scholar 

  126. M. Ashby and D.R.H. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, 3rd edition (St. Louis, MO: Butterworth-Heinemann, 2005).

    Google Scholar 

  127. D.T. Read, International Journal of Fatigue, 20(3) (1998), pp. 203–209.

    Article  CAS  Google Scholar 

  128. G.P. Zhang et al., Microelectronics Reliability, 47(12) (2007), pp. 2007–2013.

    Article  CAS  Google Scholar 

  129. Jun-Hyub Park, ManSik Myung, and Yun-Jae Kim, Sensors and Actuators A: Physical, 147(2) (2008), pp. 561–569.

    Article  MathSciNet  CAS  Google Scholar 

  130. M.A. Eby, W.M. Sharpe, Jr., and G. Coles, Proceedings Transducers’ 01 (Berlin: Springer-Verlag, 2001), pp. 1366–1369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Gianola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gianola, D.S., Eberl, C. Micro- and nanoscale tensile testing of materials. JOM 61, 24–35 (2009). https://doi.org/10.1007/s11837-009-0037-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0037-3

Keywords

Navigation