Skip to main content
Log in

Heat dissipation properties of polyimide nanocomposite films

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In development of modern electric fields, the growth of kinds of electronic devices has made the supply and research on heat dissipating films become important. To synthesize heat dissipation films with high thermal resistance for possible use in electronics applications, carbon black is doped into polyimide to increase the dissipating rate of films, at loadings of 50, 100, and 150 wt%. The resulting films display excellent thermal properties; the thermal conductivity of the film with 150 wt% carbon black is 5.59W∙m−1K−1, a value that is 35 times higher than that of pure polyimide (0.16W∙m−1K−1). To theoretically confirm the increased dissipating ability of composite films, the Nielsen equation is used for verification. The experimental results show an excellent fit with the theoretical values calculated by the Nielsen equation. The great thermal stability of polyimide composite film with carbon black is verified by using TGA and DSC, the temperature for 1% thermal decomposition of the 150wt% film is 541°C, and the glass transition temperature is 315 °C. The heat conduction results also show high heat dissipation data, which make the carbon black composite polyimide films an excellent candidate for use in electric devices to deplete the heat generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Bessonov and V. A. Zubkov, Polyamic acids and polyimides: Synthesis, transformations, and structure, CRC Press (1993).

    Google Scholar 

  2. M. Ghosh, Polyimides: Fundamentals and applications, CRC Press, 36 (1996).

    Google Scholar 

  3. C. Feger, Advances in polyimide: Science and technology, CRC Press (1993).

    Google Scholar 

  4. K. L. Mittal, Polyimides and other high temperature polymers: Synthesis, characterization and applications, CRC Press, 3 (2005).

    Book  Google Scholar 

  5. L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu and T. J. Goh, Thermochim. Acta, 430, 155 (2005).

    Article  CAS  Google Scholar 

  6. E. Gmelin, M. Asen-Palmer, M. Reuther and R. Villar, J. Phys. D. Appl. Phys., 32, R19 (1999).

    Article  CAS  Google Scholar 

  7. E. G. Wolff and D. A. Schneider, Int. J. Heat Mass Transf., 41, 3469 (1998).

    Article  CAS  Google Scholar 

  8. X. Luo, R. Chugh, B. C. Biller, Y. M. Hoi and D. D. L. Chung, J. Electron. Mater., 31, 535 (2002).

    Article  CAS  Google Scholar 

  9. T.-L. Li and S. L.-C. Hsu, J. Phys. Chem. B, 114, 6825–9 (2010).

    Article  CAS  Google Scholar 

  10. J.-B. Donnet, Carbon fibers, CRC Press (1998).

    Google Scholar 

  11. H. P. Boehm, Carbon N. Y., 32, 759 (1994).

    Article  CAS  Google Scholar 

  12. R. W. Coughlin and F. S. Ezra, Environ. Sci. Technol., 2, 291 (1968).

    Article  CAS  Google Scholar 

  13. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita and K. Ishikawa, J. Mater. Sci., 17, 1610 (1982).

    Article  CAS  Google Scholar 

  14. M. Sumita, S. Asai, N. Miyadera, E. Jojima and K. Miyasaka, Colloid Polym. Sci., 264, 212 (1986).

    Article  CAS  Google Scholar 

  15. M. Sumita, H. Abe, H. Kayaki and K. Miyasaka, J. Macromol. Sci., 25, 171 (1986).

    Article  CAS  Google Scholar 

  16. L. Karasek and M. Sumita, J. Mater. Sci., 31, 281 (1996).

    Article  CAS  Google Scholar 

  17. A. Rinaldi, J.-P. Tessonnier, M. E. Schuster, R. Blume, F. Girgsdies, Q. Zhang, T. Jacob, S. B. Abd Hamid, D. S. Su and R. Schlögl, Angew. Chemie Int. Ed., 50, 3313 (2011).

    Article  CAS  Google Scholar 

  18. W. M. Hess, C. R. Herd, J. B. Donnet, R. C. Bansal and M. J. Wang, Marcel Dekker Inc., New York, 106 (1993).

    Google Scholar 

  19. Z. Han and A. Fina, Prog. Polym. Sci., 36, 914 (2011).

    Article  CAS  Google Scholar 

  20. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao and C. N. Lau, Appl. Phys. Lett., 92, 151911 (2008).

    Article  Google Scholar 

  21. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis and R. C. Haddon, Adv. Mater., 20, 4740 (2008).

    Article  CAS  Google Scholar 

  22. Z. Spitalsky, D. Tasis, K. Papagelis and C. Galiotis, Prog. Polym. Sci., 35, 357 (2010).

    Article  CAS  Google Scholar 

  23. S. Ghose, D. C. Working, J. W. Connell, J. G. Smith, K. a. Watson, D. M. Delozier, Y. P. Sun and Y. Lin, High Perform. Polym., 18, 961 (2006).

    Article  CAS  Google Scholar 

  24. Y.-J. Lee, J.-M. Huang, S.-W. Kuo, J.-S. Lu and F.-C. Chang, Polymer, 46, 173 (2005).

    Article  CAS  Google Scholar 

  25. P. Xue, Y. Bao, Q. Li, and C. Wu, Phys. Chem. Chem. Phys., 12, 11342 (2010).

    Article  CAS  Google Scholar 

  26. C. B. Bucknall and A. H. Gilbert, Polymer, 30, 213 (1989).

    Article  CAS  Google Scholar 

  27. L. E. Nielsen, Ind. Eng. Chem. Fundam., 13, 17 (1974).

    Article  CAS  Google Scholar 

  28. S. Ghose, K. a. Watson, D. M. Delozier, D. C. Working, J. W. Connell, J. G. Smith, Y. P. Sun and Y. Lin, Key Eng. Mater., 334-335, 749 (2007).

    Article  CAS  Google Scholar 

  29. H. Huang, C. H. Liu, Y. Wu and S. Fan, Adv. Mater., 17, 1652 (2005).

    Article  CAS  Google Scholar 

  30. H. Shim, M. Seo and S. Park, J. Mater. Sci., 7, 1881 (2002).

    Article  Google Scholar 

  31. A. M. Brasil, T. L. Farias and M. G. Carvalho, J. Aerosol Sci., 30, 1379 (1999).

    Article  CAS  Google Scholar 

  32. L. E. Nielsen, J. Appl. Polym. Sci., 17, 3819 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haksoo Han.

Additional information

Equally contributed to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kwon, J., Lee, D. et al. Heat dissipation properties of polyimide nanocomposite films. Korean J. Chem. Eng. 33, 3245–3250 (2016). https://doi.org/10.1007/s11814-016-0158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0158-7

Keywords

Navigation