Skip to main content
Log in

Effect of diet on the fatty acid and molecular species composition of dog retina phospholipids

  • Published:
Lipids

Abstract

Dogs were born to mothers fed commercial diets low or enriched in n-3 fatty acids and raised on those diets until they were about 50 d old. Retinas were removed, lipids were extracted, and total phospholipids were anlyzed for fatty acid and molecular species composition. Animals from the low n-3 group had significantly lower retinal levels of 22∶6n-3 and higher levels of n-6 fatty acids, especially 20∶4n-6 and 22∶5n-6. There was no difference in the retinal levels of 18∶2n-6, and only small differences were found in saturated and monounsaturated fatty acids. The most dramatic differences in molecular species occurred in 22∶6n-3-22∶6n-3 (4.7 vs. 0.8%) and 18∶0-22∶6n-3 (27.6 vs. 14.4%); total molecular species containing 22∶6n-3 were significantly lower in the low n-3 group (45.5 vs. 24.0%). Molecular species containing 20∶4n-6 and 22∶5n-6 were greater in the low n-3 animals (13.0 vs. 25.7%), as were molecular species containing only saturated and monounsaturated fatty acids (40.8 vs. 35.4%). These results show that modest differences in the amount of n-3 fatty acids in the diets of dogs can have profound effects on the fatty acid and molecular species composition of their retinas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DGBZ:

diacylglyceroben Z Dates

PUFA:

polyunsaturated fatty acid

ROS:

rod outer segment

TLC:

thin-layer chromatography

References

  1. Futterman, S., Downer, J.L., and Hendrickson, A. (1971) Effect of Essential Fatty Acid Deficiency on the Fatty Acid Composition, Morphology, and Electroretinographic Response of the Retina, Invest. Ophthalmol. 10, 151–156.

    PubMed  CAS  Google Scholar 

  2. Anderson, R.E., and Maude, M.B. (1972) Lipids of Ocular Tissues: VII. The Effects of Essential Fatty Acid Deficiency on the Phospholipids of the Photoreceptor Membranes of Rat Retina, Arch. Biochem. Biophys. 151, 270–276.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, R.E., Benolken, R.M., Jackson, M.B., and Maude, M.B. (1977) The Relationship Between Membrane Fatty Acids and the Development of the Rat Retina, in Advances in Experimental Medicine and Biology, Vol. 83, Function and Biosynthesis of Lipids (Bazan, N., Brenner, R., and Giusto, N., eds.) pp. 547–559, Plenum Publishing Corp., New York.

    Google Scholar 

  4. Wiegand, R.D., Koutz, C.A., Stinson, A.M., and Anderson, R.E. (1991) Conservation of Docosahexaenoic Acid in Rod Outer Segments of Rat Retina During n-3 and n-6 Fatty Acid Deficiency, J. Neurochem. 57, 1690–1699.

    Article  PubMed  CAS  Google Scholar 

  5. Fliesler, S.J., and Anderson, R.E. (1983) Chemistry and Metabolism of Lipids in the Vertebrate Retina, Prog. Lipid Res. 22, 79–131.

    Article  PubMed  CAS  Google Scholar 

  6. Stinson, A.M., Wiegand, R.D., and Anderson, R.E. (1991) Recycling of Docosahexaenoic Acid in Rat Retinas During n-3 Fatty Acid Deficiency, J. Lipid Res. 32, 2009–2017.

    PubMed  CAS  Google Scholar 

  7. Gordon, W.C., Rodriguez de Turco, E.B., and Bazan, N.G. (1992) Retinal Pigment Epithelial Cells Play a Central Role in the Conservation of Docosahexaenoic Acid by Photoreceptor Cells After Shedding and Phagocytosis, Curr. Eye Res. 11, 73–83.

    PubMed  CAS  Google Scholar 

  8. Chen, H., Wiegand, R.D., Koutz, C.A., and Anderson, R.E. (1992) Docosahexaenoic Acid Increases in Frog Retinal Pigment Epithelium Following Rod Photoreceptor Shedding, Exp. Eye Res. 55, 93–100.

    Article  PubMed  CAS  Google Scholar 

  9. Gordon, W.C., and Bazan, N.G. (1993) Visualization of [3H] Docosahexaenoic Acid Trafficking Through Photoreceptors and Retinal Pigment Epithelium by Electron Microscopic Autoradiography, Invest. Ophthalmol. Vis. Sci. 34, 2402–2411.

    PubMed  CAS  Google Scholar 

  10. Bazan, N.G., Rodriguez de Turco, E.B., and Gordon, W.C. (1993) Pathways for the Uptake and Conservation of Docosahexaenoic Acid in Photoreceptors and Synapses: Biochemical and Autoradiographic Studies, Can. J. Physiol. Pharmacol. 71, 690–698.

    PubMed  CAS  Google Scholar 

  11. Young, R.W. (1976) Visual Cells and the Concept of Renewal, Invest. Ophthalmol. Vis. Sci. 15, 700–725.

    PubMed  CAS  Google Scholar 

  12. Wiegand, R.D., Koutz, C.A., Chen, H., and Anderson, R.E. (1995) Effect of Dietary Fat and Environmental Lighting on the Phospholipid Molecular Species of Rat Photoreceptor Membranes, Exp. Eye Res. 60, 291–306.

    Article  PubMed  CAS  Google Scholar 

  13. Neuringer, M., Connor, W.E., Lin, D.S., Barstad, L., and Luck, S. (1986) Biochemical and Functional Effects of Prenatal and Postnatal Omega 3 Fatty Acid Deficiency on Retina and Brain in Rhesus Monkeys, Proc. Natl. Acad. Sci. USA 83, 4021–4025.

    Article  PubMed  CAS  Google Scholar 

  14. Galli, C., Trzeciak, H.I., and Paoletti, R. (1971) Effects of Dietary Fatty Acids on the Fatty Acid Composition of the Brain Ethanolamine Phosphoglyceride: Reciprocal Replacement of n-6 and n-3 Polyunsaturated Fatty Acids, Biochim. Biophys. Acta 248, 449–454.

    CAS  Google Scholar 

  15. Bourre, J.M., Pascal, G., Gurand, G., Masson, M., Dumont, O., and Piciotti, M. (1984) Alterations in the Fatty Acid Composition of Rat Brain Cells (neurons, astrocytes, and oligodendrocytes) and of Subcellular Fractions (myelin and synaptosomes) Induced by a Diet Devoid of n-3 Fatty Acids, J. Neurochem. 43, 342–348.

    Article  PubMed  CAS  Google Scholar 

  16. Gazzah, N., Gharib, A., Bobillier, P., Lagarde, M., and Sarda, N. (1994) Decrease of Brain Phospholipid Synthesis in Free-Moving n-3 Fatty Acid Deficient Rats, J. Neurochem 64, 908–918.

    Article  Google Scholar 

  17. Anderson, R.E., Maude, M.B., Alvarez, R.A., Acland, G.M., and Aguirre, G. (1991) Plasma Lipid Abnormalities in the Miniature Poodle with Progressive Rod-Cone Degeneration, Exp. Eye. Res. 52, 349–355.

    Article  PubMed  CAS  Google Scholar 

  18. Aguirre, G.D., Acland, G.M., Maude, M.B., and Anderson, R.E. (1997) Diets Enriched in Docosahexaenoic Acid Fail to Correct Progressive Rod-Cone Degeneration (prcd) Phenotype, Invest. Ophthalmol. Vis. Sci. 38, 2387–2407.

    PubMed  CAS  Google Scholar 

  19. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  20. Arvidson, G.A.E. (1968) Structural and Metabolic Heterogeneity of Rat Liver Glycerophosphatides, Eur. J. Biochem. 4, 478–486.

    Article  PubMed  CAS  Google Scholar 

  21. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Trifluoride Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  22. Stinson, A.M., Wiegand, R.D., and Anderson, R.E. (1991) Fatty Acid and Molecular Species Compositions of Phospholipids and Diacylglycerols from Rat Retinal Membranes, Exp. Eye Res. 52, 213–218.

    Article  PubMed  CAS  Google Scholar 

  23. Wiegand, R.D., and Anderson, R.E. (1983) Phospholipid Molecular Species of Frog Rod Outer Segment Membranes, Exp. Eye Res. 37, 159–173.

    Article  PubMed  CAS  Google Scholar 

  24. Blank, M.L., Robinson, M., Fitzgerald, V., and Snyder, F. (1984) Novel Quantitative Method for Determination of Molecular Species of Phospholipids and Diglycerides, J. Chromatogr. 298, 473–482.

    Article  PubMed  CAS  Google Scholar 

  25. Louie, K., Wiegand, R.D., and Anderson, R.E. (1988) Docosahexaenoate-Containing Molecular Species of Glycerophospholipids from Frog Retinal Rod Outer Segments Show Different Rates of Biosynthesis and Turnover, Biochemistry 27, 9014–9020.

    Article  PubMed  CAS  Google Scholar 

  26. Benolken, R.M., Anderson, R.E., and Wheeler, T.G. (1973) Membrane Fatty Acids Associated with the Electrical Response in Visual Excitation, Science 182, 1253–1254.

    Article  PubMed  CAS  Google Scholar 

  27. Wheeler, T.G., Benolken, R.M., and Anderson, R.E. (1975) Visual Membrane: Specificity of Fatty Acid Precursors for the Electrical Response to Illumination, Science 188 1312–1314.

    Article  PubMed  CAS  Google Scholar 

  28. Watanabe, I., Kato, M., Aonuma, H., Hishimoto, A., Naito, Y., Moriuchi, A., and Okuyama, H. (1987) Effect of Dietary Alpha-Linolenate/Linoleate Balance on the Lipid Composition and Electroretinographic Responses in Rats, in Advances in the Biosciences, Research in Retinitis Pigmentosa (Zrenner, E., Krastel, H., and Goebel, H.H., eds.) Vol. 62, pp. 563–570, Pergamon Journals Ltd., Oxford.

    Google Scholar 

  29. Bourre, J.-M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989) The Effects of Dietary α-Linolenic Acid on the Composition of Nerve Membranes, Enzymatic Activity, Amplitude of Electrophysiological Parameters. Resistance to Poisons and Performance of Learning Tasks in Rats, J. Nutr. 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  30. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) The Effect of Docosahexaenoic Acid on the Electroretinogram of the Guinea Pig, Lipids 31, 65–70.

    Article  PubMed  CAS  Google Scholar 

  31. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) Effect of Dietary n-3 Deficiency on the Electroretinogram in the Guinea Pig, Ann. Nutr. Metab. 40, 91–98.

    PubMed  CAS  Google Scholar 

  32. Neuringer, M., Connor, W.E., Van Patten, C., and Barstad, L. (1984) Dietary Omega-3 Fatty Acid Deficiency and Visual Loss in Infant Rhesus Monkeys, J. Clin. Invest. 73, 272–276.

    Article  PubMed  CAS  Google Scholar 

  33. Heird, W.C., Prager, T.C., and Anderson, R.E. (1997) Docosahexaenoic Acid and the Development and Function of the Infant Retina, Curr. Opin. Lipidol. 8, 12–16.

    Article  PubMed  CAS  Google Scholar 

  34. Anderson, R.E., Maude, M.B., Nilsson, S.E.G., and Narfström, K. (1991) Plasma Lipid Abnormalities in the Abyssinian Cat with a Hereditary Rod-Cone Degeneration, Exp. Eye. Res. 53, 415–417.

    Article  PubMed  CAS  Google Scholar 

  35. Bazan, N.G., Scott, B.L., Reddy, T.S., and Pelias, M.Z. (1986) Decreased Content of Docosahexaenoate and Arachidonate in Plasma Phospholipids in Usher's Syndrome, Biochem. Biophys. Res. Commun., 141, 600–604.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson, R.E., Maude, M.B., Lewis, R.A., Newsome, D.A., and Fishman, G.A. (1987) Abnormal Plasma Levels of Polyunsaturated Fatty Acid in Autosomal Dominant Retinitis Pigmentosa, Exp. Eye Res. 44, 155–159.

    Article  PubMed  CAS  Google Scholar 

  37. Converse, C.A., Hammer, H.M., Packard, C.J., and Shepherd, J. (1983) Plasma Lipid Abnormalities in Retinitis Pigmentosa and Related Conditions, Trans. Ophthalmol. Sci. UK 103, 508–512.

    Google Scholar 

  38. Hoffman, D.R., and Birch, D.G. (1995) Docosahexaenoic Acid in Red Blood Cells of Patients with X-linked Retinitis Pigmentosa, Invest. Ophthal. Vis. Sci. 36, 1009–1018.

    PubMed  CAS  Google Scholar 

  39. Alvarez, R.A., Aguirre, G.D., Acland, G.M., and Anderson, R.E. (1994) Docosapentaenoic Acid Is Converted to Docosahexaenoic Acid in the Retinas of Normal and prcd-Affected Miniature Poodle Dogs, Invest. Ophthalmol. Vis. Sci. 35, 402–408.

    PubMed  CAS  Google Scholar 

  40. Hoffman, D.R., Uauy, R., and Birch, D.G. (1995) Metabolism of Omega-3 Fatty Acids in Patients with Autosomal Dominant Retinitis Pigmentosa, Exp. Eye Res. 60, 279–289.

    Article  PubMed  CAS  Google Scholar 

  41. Arbuckle, L.D., and Innis, S.M. (1992) Docosahexaenoic Acid in Developing Brain and Retina of Piglets Fed High or Low α-Linolenate Formula With and Without Fish Oil, Lipids 27, 89–93.

    PubMed  CAS  Google Scholar 

  42. Craig-Schmidt, M.C., Stieh, K.E., and Lien, E.L. (1996) Retinal Fatty Acids of Piglets Fed Docosahexaenoic and Arachidonic Acids from Microbial Sources, Lipids 31, 53–59.

    Article  PubMed  CAS  Google Scholar 

  43. Philbrick, D.J., Mahadevappa, V.G., Ackman, R.G., and Holub, B.J. (1987) Ingestion of Fish Oil or a Derived n-3 Fatty Acid Concentrate Containing Eicosapentaenoic Acid (EPA) Affects Fatty Acid Composition of Individual Phospholipids of Rat Brain, Sciatic Nerve and Retina, J. Nutr. 117, 1663–1670.

    PubMed  CAS  Google Scholar 

  44. Aveldano, M.I., and Bazan, N.G. (1983) Molecular Species of Phosphatidylcholine,-ethanolamine,-serine, and-inositol in Microsomal and Photoreceptor Membranes of Bovine Retina, J. Lipid Res., 24, 620–627.

    PubMed  CAS  Google Scholar 

  45. Bell, M.V., Dick, J.R., and Buda, Cs. (1997) Molecular Speciation of Fish Sperm Phospholipids: Large Amounts of Dipolyunsaturated Phosphatidylserine, Lipids 32, 1085–1091.

    PubMed  CAS  Google Scholar 

  46. Louie, K., Zimmerman, W.F., Keys, S., and Anderson, R.E. (1991) Phospholipid Molecular Species from Isolated Bovine Rod Outer Segments Incorporate Exogenous Fatty Acids at Different Rates, Exp. Eye Res 53, 309–316.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Delton-Vandenbroucke, I., Maude, M.B., Chen, H. et al. Effect of diet on the fatty acid and molecular species composition of dog retina phospholipids. Lipids 33, 1187–1193 (1998). https://doi.org/10.1007/s11745-998-0322-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0322-7

Keywords

Navigation