Skip to main content
Log in

Evaluation of Strain Measurement in a Die-to-Interposer Chip Using In Situ Synchrotron X-Ray Diffraction and Finite-Element Analysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To decrease the size of portable devices, this study incorporates a stacked three-dimensional integrated circuit architecture into advanced packaging techniques. The traditional FR-4 substrate was substituted with silicon interposers. Because silicon is rigid and highly resistant to deformation, this minimizes thermal stress caused by thermal expansion mismatch in the structure. This study shows that underfill applied stress to the dies when the temperature was varied, threatening the devices. Damage was most likely to occur at the die corners. The stresses were measured in situ at different temperatures using synchrotron radiation x-ray analysis. Simulation results confirm the measured data trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Savastiouk, O. Siniaguine, and M. Diorio, Adv. Packag. 7, 55–58 (1998).

    Google Scholar 

  2. C.C. Chung, T.F. Yang, J.Y. Juang, Y.P. Hung, C.J. Zhan, Y.M. Lin, C.T. Lin, P.C. Chang, and T.C. Chang, Microelectron. Reliab. 48, 1875–1881 (2008).

    Article  Google Scholar 

  3. T. Alander, I. Suominen, P. Heino, and E. Ristolainen, Solder. Surf. Mt. Technol. 15, 8–14 (2003).

    Article  Google Scholar 

  4. S. Katsurayama and H. Tohmyoh, J. Electron. Packag. 131, 1–031005 (2009).

    Article  Google Scholar 

  5. K. Verma, D. Columbus, and B. Han, IEEE Trans. Electron. Packag. Manuf. 22, 63 (1999).

    Article  Google Scholar 

  6. S.A. Gee, W.F. Van Den Bogert, and V.R. Akylas, IEEE Trans. Compon. Packag. Technol. 12, 587 (1989).

    Google Scholar 

  7. P.S. Ho, G. Wang, M. Ding, J.H. Zhao, and X. Dai, Microelectron. Reliab. 44, 719 (2004).

    Article  Google Scholar 

  8. R. Darveaux, I. Turlik, L.T. Hwang, and A. Reisman, IEEE Trans. Compon. Packag. Technol. 12, 663 (1989).

    Google Scholar 

  9. A. Toda and N. Ikarashi, Jpn. J. Appl. Phys. 49, 04DB03 (2010).

  10. J. Kanatharana, J.J. Pérez-Camacho, T. Buckley, P.J. McNally, T. Tuomi, M. O’Harem, D. Lowney, W. Chen, R. Rantamäki, L. Knuuttila, and J. Riikonen, J. Phys. D 36, A60 (2003).

    Article  Google Scholar 

  11. P.J. McNally, J. Kanatharana, B.H.W. Toh, D.W. Mcneill, A.N. Danilewsky, T. Tuomi, L. Knuuttila, J. Riikonen, J. Toivonen, and R. Simon, J. Appl. Phys. 96, 7596 (2004).

    Article  Google Scholar 

  12. K. Chen, N. Tamura, W. Tang, M. Kunz, Y.C. Chou, K.N. Tu, and Y.S. Lai, J. Appl. Phys. 107, 063502 (2010).

    Article  Google Scholar 

  13. A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, Appl. Phys. Lett. 85, 2490 (2004).

    Article  Google Scholar 

  14. A.T. Wu, C.Y. Tsai, C.L. Kao, M.K. Shih, Y.S. Lai, H.Y. Lee, and C.S. Ku, J. Electron. Mater. 38, 2308 (2009).

    Article  Google Scholar 

  15. M. Sobiech, M. Wohlschlögel, U. Welzel, E.J. Mittemeijer, W. Hügel, A. Seekamp, W. Liu, and G.E. Ice, Appl. Phys. Lett. 94, 221901 (2009).

    Article  Google Scholar 

  16. A.S. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, Q.H. Chung, K.Y. Byun, N. Tamura, M. Kunz, and Y.C. Joo, Microelectron. Reliab. 52, 530–533 (2011).

    Article  Google Scholar 

  17. A.S. Budiman, S.M. Han, J.R. Greer, N. Tamura, J.R. Patel, and W.D. Nix, Acta Mater. 58, 602–608 (2008).

    Article  Google Scholar 

  18. A.S. Budiman, G.H. Lee, M.J. Nurek, D.C. Jang, S.M.J. Han, N. Tamura, M. Kunz, J.R. Greer, and T.Y. Tsui, Mater. Sci. Eng. A 538, 89–97 (2012).

    Article  Google Scholar 

  19. S.N. Hsiao, F.T. Yuan, H.W. Chang, S.K. Chen, and H.Y. Lee, Appl. Phys. Lett. 94, 232505 (2009).

    Article  Google Scholar 

  20. H.C. Yang, and T.C. Chiu, in Proc. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, (2012) pp. 863–869.

  21. A. Jalar, Z. Kornain, R. Rasid, S. Abdullah, and N.K. Othman, Adv. Mater. Res. 148, 1108 (2011).

    Google Scholar 

  22. K.P. Wang, Y.Y. Huang, A. Chandra, and K.X. Hu, IEEE Trans. Compon. Packag. Technol. 23, 309 (2000).

    Article  Google Scholar 

  23. M. Modi, C. McCormick, and N. Armendariz, Proceedings of Electronic Components and Technology Conference, (Orlando, FL, USA, 2005) pp. 977–982.

  24. T.Y. Tee, H.S. Ng, D. Yap, X. Baraton, and Z. Zhong, Microelectron. Reliab. 43, 1117 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert T. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, HH., Chiu, TC., Chang, TC. et al. Evaluation of Strain Measurement in a Die-to-Interposer Chip Using In Situ Synchrotron X-Ray Diffraction and Finite-Element Analysis. J. Electron. Mater. 43, 52–56 (2014). https://doi.org/10.1007/s11664-013-2828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2828-0

Keywords

Navigation