Skip to main content
Log in

Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Cu6Sn5 is the most common and important intermetallic compound (IMC) formed between Sn-based solders and Cu substrates during soldering. The Cu6Sn5 IMC exhibits significantly different thermomechanical properties from the solder alloys and the substrate. The progress of high-density three-dimensional (3D) electrical packaging technologies has led to increased operating temperatures, and interfacial Cu6Sn5 accounts for a larger volume fraction of the fine-pitch solder joints in these packages. Knowledge of creep and the mechanical behavior of Cu6Sn5 at elevated temperatures is therefore essential to understanding the deformation of a lead-free solder joint in service. In this work, the effects of temperature and Ni solubility on creep and mechanical properties of Cu6Sn5 were investigated using energy-dispersive x-ray spectroscopy and nanoindentation. The reduced modulus and hardness of Cu6Sn5 were found to decrease as temperature increased from 25°C to 150°C. The addition of Ni increased the reduced modulus and hardness of Cu6Sn5 and had different effects on the creep of Cu6Sn5 at room and elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.C. Chan and D. Yang, Prog. Mater. Sci. 55, 428 (2010).

    Article  CAS  Google Scholar 

  2. K.N. Tu, Microelectron. Reliab. 51, 517 (2011).

    Article  CAS  Google Scholar 

  3. H.Y. Hsiao, C.M. Liu, H. Lin, T.C. Liu, C.L. Lu, Y.S. Huang, C. Chen, and K.N. Tu, Science 366, 1007 (2012).

    Article  Google Scholar 

  4. J. Keller, D. Baither, U. Wilke, and G. Schmitz, Acta Mater. 59, 2731 (2011).

    Article  CAS  Google Scholar 

  5. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  6. X. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Acta Mater. 52, 4291 (2004).

    Article  CAS  Google Scholar 

  7. L. Xu and J.H.L. Pang, Thin Solid Films 504, 362 (2006).

    Article  CAS  Google Scholar 

  8. P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, and R.S. Chen, Mater. Sci. Eng. A 485, 305 (2008).

    Article  Google Scholar 

  9. H. Tsukamoto, Z.G. Dong, H. Huang, and T. Nishimura, Mater. Sci. Eng. B 164, 44 (2009).

    Article  CAS  Google Scholar 

  10. D. Mu, H. Tsukamoto, H. Huang, and K. Nogita, Mater. Sci. Forum 654, 2450 (2010).

    Article  Google Scholar 

  11. N. Lee, V. Tan, and K. Lim, App. Phys. Lett. 88, 031913 (2006).

    Article  Google Scholar 

  12. D. Mu, H. Huang, K. Nogita, Mater. Lett. 86, 46 (2012)

    Google Scholar 

  13. D. Mu, H. Yasuda, H. Huang, and K. Nogita, J. Alloys Compd. 536, 38 (2012).

    Article  CAS  Google Scholar 

  14. M. Li, M. Yang, and J. Kim, Mater. Lett. 65, 1506 (2011).

    Article  Google Scholar 

  15. J.M. Song, C.W. Su, Y.S. Lai, and Y.T. Chiu, J. Mater. Res. 25, 629 (2010).

    Article  CAS  Google Scholar 

  16. K. Nogita, C. Gourlay, and T. Nishimura, JOM 61, 45 (2009).

    Article  CAS  Google Scholar 

  17. K. Nogita, S.D. McDonald, H. Tsukamoto, J. Read, S. Suenaga, and T. Nishimura, Trans. Jpn. Inst. Electron. Packag. 2, 46 (2009).

    Article  CAS  Google Scholar 

  18. T. Laurila, J. Hurtig, V. Vuorinen, and J.K. Kivilahti, Microelectron. Reliab. 49, 242 (2009).

    Article  CAS  Google Scholar 

  19. F. Gao, T. Takemoto, and H. Nishikawa, J. Electron. Mater. 35, 2081 (2006).

    Article  CAS  Google Scholar 

  20. C. Yu, J. Liu, H. Lu, P. Li, and J. Chen, Intermetallics 15, 1471 (2007).

    Article  CAS  Google Scholar 

  21. K. Nogita and T. Nishimura, Scrip. Mater. 29, 191 (2008).

    Article  Google Scholar 

  22. K. Nogita, Intermetallics 18, 145 (2010).

    Article  CAS  Google Scholar 

  23. K. Nogita, D. Mu, S.D. McDonald, J. Read, and Y.Q. Wu, Intermetallics 26, 78 (2012).

    Article  CAS  Google Scholar 

  24. D. Mu, J. Read, Y.F. Yang, and K. Nogita, J. Mater. Res. 26, 2660 (2011).

    Article  CAS  Google Scholar 

  25. H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawn, Y. Liu, X.Z. Hu, J.M. Dell, and L. Faraone, Mater. Sci. Eng. A 435, 453 (2006).

    Article  Google Scholar 

  26. I.C. Choi, B.G. Yoo, Y.J. Kim, and J. Jang, J. Mater. Res. 1, 1 (2011).

    Article  Google Scholar 

  27. Y.C. Liu, J.W.R. Teo, S.K. Tung, and K.H. Lam, J Alloys Compd. 448, 340 (2008).

    Article  CAS  Google Scholar 

  28. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, and J. Wen, J. Electron. Mater. 39, 223 (2010).

    Article  CAS  Google Scholar 

  29. F. Gao, H. Nishikawa, T. Takemoto, and J. Qu, Microelectron. Reliab. 49, 296 (2009).

    Article  CAS  Google Scholar 

  30. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (New York: Wiley, 1989), p. 1.

    Google Scholar 

  31. H. Ma and J.C. Suhling, J. Mater. Sci. 44, 1141 (2009).

    Article  CAS  Google Scholar 

  32. H. Okamoto, Phase Diagrams of Dilute Binary Alloys (Materials Park, OH: ASM International, 2002), p. 243.

    Google Scholar 

  33. D.R. Askeland, P.P. Fulay, and D. Bhattacharya, Essentials of Materials Science and Engineering, 2nd ed. (Stamford: Cengage Engineering, Stamford, 2009), p. 604.

    Google Scholar 

  34. Y. Sun, J. Liang, Z.H. Xu, G. Wang, and X. Li, J. Mater. Sci.: Mater. Electron. 19, 514 (2008).

    Article  CAS  Google Scholar 

  35. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  36. U. Schwingenschlögl, C. Di Paola, K. Nogita, and C. Gourlay, Appl. Phys. Lett. 96, 061908 (2006).

    Article  Google Scholar 

  37. K. Nogita, C. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, and Q.F. Gu, Scr. Mater. 65, 922 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dekui Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, D., Huang, H., McDonald, S.D. et al. Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures. J. Electron. Mater. 42, 304–311 (2013). https://doi.org/10.1007/s11664-012-2227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2227-y

Keywords

Navigation