Skip to main content
Log in

Mg-Vacancy-Induced Semiconducting Properties in Mg2Si1–x Sb x from Electronic Structure Calculations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present electronic structure calculations of ordered Mg2Si as well as disordered Mg2Si1−x Sb x and Mg2−δ Si1−x Sb x systems, carried out by the Korringa–Kohn–Rostoker method with the coherent potential approximation (KKR-CPA). The computed densities of states (DOS) clearly show that a vacancy on the Mg site behaves as a double hole donor. Such electronic structure behavior together with n-type doping by antimony leads to electron–hole compensation. Consequently, the semiconductor–metal crossover expected in Mg2Si1−x Sb x due to the Fermi level shift into conduction states is not observed when important vacancy defects appear on the Mg site. Conversely, the Fermi level remains inside the energy gap if the antimony concentration is twice the vacancy concentration. The possible origin of vacancy formation in Mg2Si1−x Sb x is discussed based on the formation energy calculations as well as DOS features. Our KKR-CPA results well support recent electron transport properties measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, and K. Masumoto, Mater. Trans. JIM 33, 845 (1992).

    CAS  Google Scholar 

  2. J. Tani and H. Kido, Physica B 364, 218 (2005).

    Article  CAS  ADS  Google Scholar 

  3. V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectrics Handbook, Chap. 29 (Boca Raton, FL: CRC Press, 2006).

  4. K. Mars, G. Pont, L. Chaput, D. Fruchart, J. Tobola, and H. Scherrer, Proceedings of European Conference on Thermoelectrics (Paris, France, 2008).

  5. K. Mars, H. Ihou-Mouko, G. Pont, J. Tobola, and H. Scherrer, J. Electron. Mater. 38, 1360 (2009).

    Article  CAS  ADS  Google Scholar 

  6. G. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).

    Article  ADS  Google Scholar 

  7. A. Bansil, S. Kaprzyk, P.E. Mijnarends, and J. Tobola, Phys. Rev. B 60, 13396 (1999).

    Article  CAS  ADS  Google Scholar 

  8. T. Stopa, S. Kaprzyk, and J. Tobola, J. Phys.: Condens. Matter 16, 4921 (2004).

    Article  CAS  ADS  Google Scholar 

  9. S. Kaprzyk and A. Bansil, Phys. Rev. B 42, 7358 (1990).

    Article  ADS  Google Scholar 

  10. P. Villars and K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD-ROM), Version 1.0, Release 2007/8 (Materials Park, OH: ASM International).

  11. J. Tani and H. Kido, Intermetallics 16, 418 (2008).

    Article  CAS  Google Scholar 

  12. T.E.M. Staab, Phys. Status Solidi B 246, 1587 (2009).

    Article  CAS  ADS  Google Scholar 

  13. V.K. Zaitsev, M.I. Fedorov, E.A. Guriewa, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 0452071 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Tobola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobola, J., Kaprzyk, S. & Scherrer, H. Mg-Vacancy-Induced Semiconducting Properties in Mg2Si1–x Sb x from Electronic Structure Calculations. J. Electron. Mater. 39, 2064–2069 (2010). https://doi.org/10.1007/s11664-009-1000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-1000-3

Keywords

Navigation