Skip to main content
Log in

Effects of Cooling Rate and Solute Content on the Grain Refinement of Mg-Gd-Y Alloys by Aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Al additions on grain refinement of Mg-Gd-Y alloys with different solute contents at different cooling rates has been investigated. For all alloys, significant grain refinement was due to the formation of Al2(Gd x Y1−x ) nucleant particles. The number density and size distribution of Al2(Gd x Y1−x ) were affected by both solute content and the cooling rate. Grain sizes (d gs) of Mg-Gd-Y base alloys and of Mg-Gd-Y-Al alloys were related to solute content (defined by the growth restriction factor, Q), cooling rate (\( \dot{T} \)), and area number density (ρ ns) and size (d p) of nucleant particles that can be activated. It is found that grain sizes of Mg-Gd-Y base alloys follow the relationship \( d_{\text{gs}} = a + \frac{b}{{Q\sqrt {\dot{T}} }} \), while grain sizes of Al-refined samples follow the relationship \( d_{\text{gs}} = \frac{a'}{{\sqrt {\rho {}_{\text{ns}}} }} + \frac{b'}{{\sqrt {\dot{T}} Qd_{\text{p}} }} \), where a, b, a′, and b′ were constants. In addition, the grain refinement effect of Al additions was more susceptible to solute content and the cooling rate than that of Zr which is regarded as the most efficient grain refiner for Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] D.H. StJohn, M.A. Easton, M. Qian, and J.A. Taylor: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2935–49.

    Article  Google Scholar 

  2. [2] M. Easton and D. StJohn: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1911–20.

    Article  Google Scholar 

  3. [3] M. Easton and D. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613–23.

    Article  Google Scholar 

  4. [4] D. Turnbull: Acta Metall., 1953, vo. 1, pp. 8–14.

    Article  Google Scholar 

  5. [5] A.L. Greer: Phil. Trans. R. Soc. Lond. A, 2003, vol. 361, pp. 479–95.

    Article  Google Scholar 

  6. [6] D. Turnbull: J. Chem. Phys., 1950, vol. 18, pp. 198–203.

    Article  Google Scholar 

  7. [7] A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    Article  Google Scholar 

  8. [8] T.E. Quested and A.L. Greer: Acta Mater., 2004, vol. 52, pp. 3859–68.

    Article  Google Scholar 

  9. [9] M. Easton and D. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1625–33.

    Article  Google Scholar 

  10. [10] M.A. Easton and D.H. StJohn: Acta Mater., 2001, vol. 49, pp. 1867–78.

    Article  Google Scholar 

  11. [11] D. StJohn, M. Qian, M. Easton, P. Cao, and Z. Hildebrand: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1669–79.

    Article  Google Scholar 

  12. [12] G. Chai, L. Backerud, and L. Arnberg: Mater. Sci. Technol., 1995, vol. 11, pp. 1099–103.

    Article  Google Scholar 

  13. [13] D. Eskin, Q. Du, D. Ruvalcaba, and L. Katgerman: Mater. Sci. Eng. A, 2005, vol. 405, pp. 1–10.

    Article  Google Scholar 

  14. [14] X. Zeng, Y. Wang, W. Ding, A. Luo, and A. Sachdev: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1333–41.

    Article  Google Scholar 

  15. [15] M.A. Easton and D.H. StJohn: Mater. Sci. Eng. A, 2008, vol. 486, pp. 8–13.

    Article  Google Scholar 

  16. [16] Y. Lü, Q. Wang, X. Zeng, W. Ding, C. Zhai, and Y. Zhu: Mater. Sci. Eng. A, 2000, vol. 278, pp. 66–76.

    Article  Google Scholar 

  17. [17] J. Bai, Y. Sun, F. Xue, and J. Qiang: Mater. Sci. Eng. A, 2012, vol. 552, pp. 472–80.

    Article  Google Scholar 

  18. [18] E.F. Emley: Principles of Magnesium Technology, Pergamon Press, Oxford, United Kingdom, 1966.

    Google Scholar 

  19. [19] I.A. Anyanwu, S. Kamado, and Y. Kojima: Mater. Trans., 2001, vol. 42, pp. 1212–18.

    Article  Google Scholar 

  20. [20] T. Honma, T. Ohkubo, K. Hono, and S. Kamado: Mater. Sci. Eng. A, 2005, vol. 395, pp. 301–06.

    Article  Google Scholar 

  21. [21] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: J. Alloy. Compd., 2006, vol. 421, pp. 309–13.

    Article  Google Scholar 

  22. [22] D. Qiu, M.X. Zhang, J.A. Taylor, and P.M. Kelly: Acta Mater., 2009, vol. 57, pp. 3052–59.

    Article  Google Scholar 

  23. [23] J. Dai, M. Easton, S. Zhu, G. Wu, and W. Ding: J. Mater. Res., 2012, vol. 27, pp. 2790–97.

    Article  Google Scholar 

  24. [24] J. Dai, S. Zhu, M.A. Easton, M. Zhang, D. Qiu, G. Wu, W. Liu, and W. Ding: Mater. Sci. Eng. A, 2013, vol. 576, pp. 298–305.

    Article  Google Scholar 

  25. [25] M. Johnsson: Z. Metallkd., 1994, vol. 85, pp. 781–85.

    Google Scholar 

  26. S. Cashion, N. Ricketts, and R. Bailey: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, Wiley, 2004, pp. 995–1000.

  27. L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminium Alloys, vol. 1, Skanaluminium, Universitetsforlaget As, Oslo, 1986.

  28. [28] M. Easton, C. Davidson, and D. St John: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1528–38.

    Article  Google Scholar 

  29. [29] M. Easton, C. Davidson, and D. StJohn: Mater. Trans., 2011, vol. 52, pp. 842–47.

    Article  Google Scholar 

  30. [30] Z.K. Peng, X.M. Zhang, J.M. Chen, Y. Xiao, H. Jiang, Mater. Sci. Technol., 2005, vol. 21, pp. 722–26.

    Article  Google Scholar 

  31. [31] M. Sun, G. Wu, J. Dai, W. Wang, and W. Ding: J. Alloy. Compd., 2010, vol. 494, pp. 426–33.

    Article  Google Scholar 

  32. [32] L. Gao, R.S. Chen, and E.H. Han: J. Mater. Sci., 2009, vol. 44, pp. 4443–54.

    Article  Google Scholar 

  33. [33] D.H. StJohn, P. Cao, M. Qian, and M.A. Easton: Adv. Eng. Mater., 2007, vol. 9, pp. 739–46.

    Article  Google Scholar 

  34. [34] A. Tronche and A.L. Greer: Phil. Mag. Lett., 2001, vol. 81, pp. 321–28.

    Article  Google Scholar 

  35. [35] D. Qiu and M.X. Zhang: J. Alloy. Compd., 2009, vol. 488, pp. 260–64.

    Article  Google Scholar 

  36. [36] D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907–21.

    Article  Google Scholar 

  37. [37] E.E. Underwood: Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

  38. [38] A.A. Nayeb-Hashemi and J.B. Clark: Phase Diagrams of Binary Magnesium Alloys, ASM International, Materials Park, OH, 1988.

    Google Scholar 

  39. [39] P. Cao, M. Qian, and D.H. StJohn: Scripta Mater., 2007, vol. 56, pp. 633–36.

    Article  Google Scholar 

  40. [40] M. Sun, M.A. Easton, D.H. Stjohn, G. Wu, T.B. Abbott, and W. Ding: Adv. Eng. Mater., 2013, vol. 15, pp. 373–78.

    Article  Google Scholar 

  41. [41] H.W. Chang, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhang: J. Magnesium Alloy., 2013, vol. 1, pp. 115–21.

    Article  Google Scholar 

  42. [42] D. Qiu and M.X. Zhang: Mater. Sci. Forum, 2010, vols. 654–656, pp. 671–74.

    Article  Google Scholar 

  43. [43] S.M. Zhu, B.L. Mordike, and J.F. Nie: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 583–86.

    Article  Google Scholar 

  44. [44] S. Pang, G. Wu, W. Liu, M. Sun, Y. Zhang, Z. Liu, and W. Ding: Mater. Sci. Eng. A, 2013, vol. 562, pp. 152–60.

    Article  Google Scholar 

  45. [45] M. Qian and D.H. Stjohn: International Journal of Cast Metals Research, 2009, vol. 22, pp. 256–59.

    Article  Google Scholar 

  46. [46] P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2ed ed., ASM International, Materials Park, OH, 1991.

    Google Scholar 

  47. [47] M. Qian, D.H. StJohn, and M.T. Frost: Mater. Sci. Forum, 2003, vols. 419–422, pp. 593-98.

    Article  Google Scholar 

  48. [48] P. Cao, M. Qian, D.H. StJohn, and M.T. Frost: Mater. Sci. Technol., 2004, vol. 20, pp. 585-92.

    Article  Google Scholar 

  49. [49] M. Qian: Acta Mater., 2006, vol. 54, pp. 2241-52.

    Article  Google Scholar 

  50. M. Sun, G. Wu, M. Easton, D. StJohn, T. Abbott, and W. Ding: 9th International Conference on Magnesium Alloys and their Applications, 2012, pp. 873–80.

  51. M. Qian, D.H. StJohn, and M.T. Frost: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, Wiley, New York, 2003, pp. 706–12.

Download references

Acknowledgments

The work is sponsored by the National Natural Science Foundation of China (No. 51275295), CAST Cooperative Research Centre of Australia, ARC Discovery Grant DP2010000071 (ME, DQ, MZ) and Research Fund for the Doctoral Program of Higher Education of China (Nos. 20120073120011 and 20130073110052). The authors acknowledge Monash Centre for Electron Microscopy (MCEM) for access to experimental facilities and thank Mr. Andrew Yob and Mrs. Maya Gershenzon at CSIRO for help with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wu.

Additional information

Manuscript submitted November 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Easton, M.A., Zhang, M. et al. Effects of Cooling Rate and Solute Content on the Grain Refinement of Mg-Gd-Y Alloys by Aluminum. Metall Mater Trans A 45, 4665–4678 (2014). https://doi.org/10.1007/s11661-014-2390-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2390-2

Keywords

Navigation