Skip to main content
Log in

Hydrogen Storage Properties of Graphite-Modified Mg-Ni-Ce Composites Prepared by Mechanical Milling Followed by Microwave Sintering

  • Symposium: Neutron and X-Ray Studies of Advanced Materials V
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Mg17Ni1.5Ce0.5 hydrogen storage composites with different contents of graphite were prepared by a new method of mechanical milling and subsequent microwave sintering. The small particle size (~25 μm) and the low echo ratio of power indicate that graphite plays an important role not only as a lubricant during mechanical milling but also as a supplementary heating material during microwave sintering. As a catalyst in the hydriding/dehydriding (H/D) reaction, graphite also improved the hydrogen storage properties of the composites. The hydrogen absorption and desorption capacities of Mg17Ni1.5Ce0.5 with 5 wt pct graphite were 5.34 and 5.30 wt pct H2 at 573 K (300 °C), its onset temperature of dehydriding reaction was 511 K (238 °C), and its activation energies of H/D reaction were 40.9 and 54.5 kJ/mol H2, respectively. The kinetic mechanisms of the H/D reaction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.C. Elam, C.E.G. Padro, G. Sandrock, A. Luzzi, P. Lindblad, and E.F. Hagen: Int. J. Hydrogen Energy, 2003, vol. 28, pp. 601–07.

    Article  CAS  Google Scholar 

  2. B. Peng, J. Liang, Z.L. Tao, and J. Chen: J. Mater. Chem., 2009, vol. 19, pp. 2877–83.

    Article  CAS  Google Scholar 

  3. L. Schlapbach and A. Züttel: Nature, 2001, vol. 414, pp. 353–58.

    Article  CAS  Google Scholar 

  4. M. Pozzo and D. Alfè: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 1922–30.

    Article  CAS  Google Scholar 

  5. A.D. Rud, A.M. Lakhnik, V.G. Ivanchenko, V.N. Uvarov, A.A. Shkola, and V.A. Dekhtyarenko: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 1310–16.

    Article  CAS  Google Scholar 

  6. Q. Li, Q. Lin, K.C. Chou, L.J. Jiang, and F. Zhan: J. Mater. Res., 2004, vol. 19, pp. 2871–76.

    Article  CAS  Google Scholar 

  7. H. Imamura: J. Less-Common Met., 1989, vol. 153, pp. 161–68.

    Article  CAS  Google Scholar 

  8. X.L. Wang, J.P. Tu, C.H. Wang, X.B. Zhang, C.P. Chen, and X.B. Zhao: J. Power Sources, 2006, vol. 159, pp. 163–66.

    Article  CAS  Google Scholar 

  9. C. Milanese, A. Girella, S. Garroni, G. Bruni, V. Berbenni, and P. Matteazzi: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 9027–37.

    Article  CAS  Google Scholar 

  10. T. Spassov, Z. Zlatanova, M. Spassova, and S. Todorova: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 10396–10403.

    Article  CAS  Google Scholar 

  11. C. Milanese, A. Girella, S. Garroni, G. Bruni, V. Berbenni, and P. Matteazzi: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 1285–95.

    Article  CAS  Google Scholar 

  12. C.Z. Wu and H.M. Cheng: J. Mater. Chem., 2010, vol. 20, pp. 5390–5400.

    Article  CAS  Google Scholar 

  13. H. Imamura, N. Sakasai, and Kajii: J. Alloys Compd., 1996, vol. 232, pp. 218–23.

  14. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  15. Y.F. Zhu, Z.B. Liu, Y. Yang, H. Gu, L.Q. Li, and M. Cai: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 6350–55.

    Article  CAS  Google Scholar 

  16. H.J. Yuan, Y. An, G.H. Xu, and C.P. Chen: Mater. Chem. Phys., 2004, vol. 83, pp. 340–44.

    Article  CAS  Google Scholar 

  17. R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili: Nature, 1999, vol. 399, pp. 668–70.

    Article  CAS  Google Scholar 

  18. K.S. Tun and M. Gupta: J. Alloys Compd., 2009, vol. 487, pp. 76–82.

    Article  CAS  Google Scholar 

  19. S.R. Vallance, S. Kingman, and D.H. Gregory: Chem. Commun., 2007, vol. 7, pp. 742–44.

    Article  Google Scholar 

  20. S.R. Vallance, S. Kingman, and D.H. Gregory: Adv. Mater., 2007, vol. 19, pp. 138–42.

    Article  CAS  Google Scholar 

  21. Y. Liu, Q. Li, G.W. Lin, K.C. Chou, and K.D. Xu: J. Alloys Compd., 2009, vol. 468, pp. 455–61.

    Article  CAS  Google Scholar 

  22. J. Meng, Y.B. Pan, Q. Luo, X.H. An, Y. Liu, and Q. Li: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 8310–16.

    Article  CAS  Google Scholar 

  23. K.E. Haque: Int. J. Miner. Process., 1999, vol. 57, pp. 1–24.

    Article  CAS  Google Scholar 

  24. C. Leonelli, P. Veronesi, L. Denti, A. Gatto, and L. Iuliano: J. Mater. Process. Technol., 2008, vol. 205, pp. 489–96.

    Article  CAS  Google Scholar 

  25. M. Golio: The RF and Microwave Handbook, 1st ed., The Chemical Rubber Co., New York, NY, 2001, pp. 88–95.

  26. M.M. Radmanesh: Radio Frequency and Microwave Electronic Illustrated, 1st ed., Prentice Hall PTR, Sebastopol, CA, 2001, pp. 288–98.

  27. K. Rajkumar and S. Aravindan: J. Mater. Process. Technol., 2009, vol. 209, pp. 5601–05.

    Article  CAS  Google Scholar 

  28. C.X. Shang and Z.X. Guo: J. Power Sources, 2004, vol. 129, pp. 73–80.

    Article  CAS  Google Scholar 

  29. F.A. Lewis and A. Aladjem: Hydrogen Metal Systems I, 1st ed., Zurich, Switzerland, 1996, pp. 35–40.

  30. D. Sun, F. Gingl, H. Enoki, D.K. Ross, and E. Akiba: Acta Mater., 2000, vol. 48, pp. 2363–72.

    Article  CAS  Google Scholar 

  31. K.C. Chou, Q. Li, Q. Lin, L.J. Jiang, and K.D. Xu: Int. J. Hydrogen Energy, 2005, vol. 30, pp. 301–09.

    Article  CAS  Google Scholar 

  32. K.C. Chou and K.D. Xu: Intermetallics, 2007, vol. 15, pp. 767–77.

    Article  CAS  Google Scholar 

  33. Q. Luo, X.H. An, Y.B. Pan, X. Zhang, J.Y. Zhang, and Q. Li: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 7842–49.

    Article  CAS  Google Scholar 

  34. A. Zaluska, L. Zaluski, and J.O. Strom-Olsen: J. Alloys Compd., 1999, vol. 288, pp. 217–25.

    Article  CAS  Google Scholar 

  35. A. Andreasen, T. Vegge, and A.S. Pedersen: J. Phys. Chem. B, 2005, vol. 109, pp. 3340–44.

    Article  CAS  Google Scholar 

  36. H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the staff at the Instrumental Analysis and Research Center (Shanghai University) for their support of the materials testing and research. This work was financially sponsored by the Shanghai Rising-Star Program (Grant No. 11QH1400900), and QL is currently supported, in part, by an appointment of the United States Department of Energy Higher Education Research Experience Program at Oak Ridge National Laboratory, administered by the Oak Ridge Institute for Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li.

Additional information

Manuscript submitted March 25, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, J., Wang, XL., Chou, KC. et al. Hydrogen Storage Properties of Graphite-Modified Mg-Ni-Ce Composites Prepared by Mechanical Milling Followed by Microwave Sintering. Metall Mater Trans A 44, 58–67 (2013). https://doi.org/10.1007/s11661-012-1301-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1301-7

Keywords

Navigation