Skip to main content
Log in

Species identification in cell culture: a two-pronged molecular approach

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Species identification of cell lines and detection of cross-contamination are crucial for scientific research accuracy and reproducibility. Whereas short tandem repeat profiling offers a solution for a limited number of species, primarily human and mouse, the standard method for species identification of cell lines is enzyme polymorphism. Isoezymology, however, has its own drawbacks; it is cumbersome and the data interpretation is often difficult. Furthermore, the detection sensitivity for cross-contamination is low; it requires large amounts of the contaminant present and cross-contamination within closely related species may go undetected. In this paper, we describe a two-pronged molecular approach that addresses these issues by targeting the mitochondrial genome. First, we developed a multiplex PCR-based assay to rapidly identify the most common cell culture species and quickly detect cross-contaminations among these species. Second, for speciation and identification of a wider variety of cell lines, we amplified and sequenced a 648-bp region, often described as the “barcode region” by using a universal primer mix targeted at conserved sequences of the cytochrome C oxidase I gene (COI). This method was challenged with a panel of 67 cell lines from 45 diverse species. Implementation of these assays will accurately determine the species of cell lines and will reduce the problems of misidentification and cross-contamination that plague research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Alexander, D.S.; Sipley, J.D.; Quigley, J.P. Autoactivation of avian urokinase-type plasminogen activator (uPA). A novel mode of initiation of the uPA/plasmin cascade. J Biol Chem 273(13):7457–61; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Buehring, G.C.; Eby, E.A.; Eby M.J. Cell line cross-contamination: how aware are Mammalian cell culturists of the problem and how to monitor it? In Vitro Cell Dev Biol Anim 40(7):211–5; 2004.

    Article  PubMed  Google Scholar 

  • Chatterjee, R. Cell biology. Cases of mistaken identity. Science 315(5814):928–31; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Cywinska, A.; Hunter, F.F.; Hebert, P.D. Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20(4):413–24; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Farris, A.D.; Koelsch, G.; Pruijn, G.J.; van Venrooij, W.J.; Harley, J.B. Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. Nucleic Acids Res 27(4):1070–8; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–9; 1994.

    PubMed  CAS  Google Scholar 

  • Harris, N.L.; Gang, D.L.; Quay, S.C.; Poppema, S; Zamecnik, P.C.; Nelson-Rees, W.A.; O’Brien, S.J. Contamination of Hodgkin’s disease cell cultures. Nature 289(5795):228–30; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R.J.; Chen, T.J.; Macy, M.L.; Reid, Y.A. Replay to “Cell, lines and DNA fingerprinting”. In Vitro Cell Dev Biol 28A:593–594; 1992.

    Article  Google Scholar 

  • Hebert, P.D.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc Biol Sci 270(1512):313–321; 2003a

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P.D.; Ratnasingham, S.; deWaard, J.R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270 Suppl 1:S96–9; 2003b.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P.D.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101(41):14812–7; 2004

    Article  PubMed  CAS  Google Scholar 

  • Ivanova, N.V.; deWaard, J.R.; Hebert, P.D.N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6:992–1002; 2006.

    Article  CAS  Google Scholar 

  • Ivanova, N.V.; Zemlak, T.S.; Hanner, R.H.; Hebert, P.D.N. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7(4):544–548; 2007.

    Article  CAS  Google Scholar 

  • Kerr, K.C.R.; Stoeckle, M.Y.; Dove, C.J.; Weight, L.A.; Francis, C.M.; Hebert, P.D.N. Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7(4):535–543; 2007.

    Article  CAS  Google Scholar 

  • Langdon, S.P. Cell culture contamination: an overview. Methods Mol Med 88:309–17; 2004.

    PubMed  Google Scholar 

  • Lincoln, C.K.; Gabridge M.G. Cell culture contamination: sources, consequences, prevention, and elimination. Methods Cell Biol 57:49–65; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M.Y.; Lin, S.C.; Liu, H.; Candal, F.; Vafai, A. Identification and authentication of animal cell culture by polymerase chain reaction amplification and DNA sequencing. In Vitro Cell Dev Biol Anim 39(10):424–7; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, J.G.; Jackson, W.E.; Beck, J.C.; Hanner, R. The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philos Trans R Soc Lond B Biol Sci 360(1462):1869–77; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Marcovici, M.; Prier, J.E.. Enhancement of St. Louis arbovirus plaque formation by neutral red. J Virol 2(3):178–81; 1968.

    PubMed  CAS  Google Scholar 

  • Markovic, O.; Markovic, N. Cell cross-contamination in cell cultures: the silent and neglected danger. In Vitro Cell Dev Biol Anim 34(1):1–8; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Masters, J.R. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2(4):315–9; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nelson-Rees, W.A.; Daniels, D.W.; Flandermeyer, R.R. Cross-contamination of cells in culture. Science 212(4493):446–52; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Parodi, B.; Aresu, O.; Bini, D.; Lorenzini, R.; Schena, F.; Visconti, P.; Cesaro, M.; Ferrera, D.; Andreotti V.; Ruzzon T. Species identification and confirmation of human and animal cell lines: a PCR-based method. Biotechniques 32(2):432–4, 436, 438–40; 2002.

    Google Scholar 

  • Povey, S.; Hopkinson, D.A.; Harris, H.; Franks, L.M. Characterisation of human cell lines and differentiation from HeLa by enzyme typing. Nature 264(5581):60–3; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Ratnasingham, S.; Hebert, P. The Barcode of Life Database. Mol. Ecol. Notes 7(3):355–364; 2007.

    Article  CAS  Google Scholar 

  • Ryder, O.A.; McLaren, A.; Brenner, S.; Zhang, Y.P.; Benirschke, K. DNA banks for endangered animal species. Science 288(5464):275–7; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sick, C.; Schultz, U.; Munster, U.; Meier, J.; Kaspers, B.; Staeheli, P. Promoter structures and differential responses to viral and nonviral inducers of chicken type I interferon genes. J Biol Chem 273(16):9749–54; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.A.; Fisher, B.L.; Hebert, P.D. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc Lond B Biol Sci 360(1462):1825–34; 2005

    Article  PubMed  CAS  Google Scholar 

  • Stacey, G.N. Cell contamination leads to inaccurate data: we must take action now. Nature 403(6768):356; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Steube, K.G.; Meyer, C.; Uphoff, C.C.; Drexler, H.G. A simple method using beta-globin polymerase chain reaction for the species identification of animal cell lines—a progress report. In Vitro Cell Dev Biol Anim 39(10):468–75; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D. DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360(1462):1847–57; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, K.; Burke, C.N.; Quimby, M.C. Duck viral enteritis: microtiter plate isolation and neutralization test using the duck embryo fibroblast cell line. Avian Dis 18(3):427–34; 1974.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research at Guelph was supported through funding to the Canadian Barcode of Life Network from Genome Canada (through the Ontario Genomics Institute), NSERC and other sponsors listed at http://www.BOLNET.ca. The authors thank Jeff Benson for his help with the sequencing analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranvera Ikonomi.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, J.K., Sykes, G., King, S. et al. Species identification in cell culture: a two-pronged molecular approach. In Vitro Cell.Dev.Biol.-Animal 43, 344–351 (2007). https://doi.org/10.1007/s11626-007-9060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9060-2

Keywords

Navigation