Skip to main content
Log in

RGD gifted PDLLA-PRGD conduits promotes the sciatic nerve regeneration

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Schwann cells play a key role in peripheral nerve growth and regeneration. The aim of this study was to evaluate the effects of RGD peptides on Schwann cell behavior, and to identify the effects of the modified PDLLA films with RGD in vivo. The results revealed that RGD coating with the concentration of 100–500 ug/mL promoted the cell proliferation and boosted the cell migration. Molecularly, RGD coating also enhanced the expression of the proliferation related genes (c-fos and c-jun) and the cell behavior related genes (actin, tublin, tau and MAP1) at first stages of the seeding, which is similar to the effects from laminin coating. In vivo, RGD addition improved the recovery efficiency of the transected nerve in regard of the more survived Schwann cells in vivo and the formation of more mature myelin sheath. Taken together, RGD peptides are good candidates to enhance the biocompatibility of the biomaterials and facilitate the peripheral nerve regeneration by prompting responses in Schwann cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Epple M, Rueger J M Festk. Orperchemie Und Chirurgie [J]. Nachr. Chem. Tech. Lab., 1999, 47: 1 405–1 410

    Article  Google Scholar 

  2. Rasmussen J R, Stedronsky E R, Whitesides G M. Introduction, Modification, and Characterization of Functional Groups on the Surface of Low-density Polyethylene Film [J]. J. Am. Chem. Soc., 1977, 99: 4 736–4 745

    Article  Google Scholar 

  3. Lee J H, Jung J W, Kang I K, et al. Cell Behaviour on Polymer Surfaces with Different Functional Groups [J]. Biomaterials, 1994, 15: 705–711

    Article  Google Scholar 

  4. Brandley B K, Schnaar R L. Covalent Attachment of an ARG-GLY-ASP Sequence Peptide to Derivatizable Polyacrylamide Surfaces: Support of Fibroblast Adhesion and Long-term Growth [J]. Anal. Biochem., 1998, 172: 270–278

    Article  Google Scholar 

  5. Lin H B, Zhao Z C, Garcia-Echeverria C, et al. Synthesis of a Novel Polyurethane Copolymer Containing Covalently AttachedRGD Peptide [J]. J Biomater. Sci., 1991, 3: 217–227

    Article  Google Scholar 

  6. Falb R D, Grode G A. Covalent Bonding of Proteins to Solid Surfaces [J]. Fed. Proc., 1971, 30: 1 688–1 691

    Google Scholar 

  7. Kobayashi K, Sumitomo H. Oligosaccharide-carrying Styrenetype Macromers. Polymerization Andspecific Interactions between the Polymers and Liver Cells [J]. J. Macromol. Sci. Chem., 1988, 25: 655–667

    Article  Google Scholar 

  8. Weigel P H, Schnaar R L, Kuhlenschmidt M S, et al. Adhesion of Hepatocytes to Immobilized Sugars: A Threshold Phenomenon [J]. J. Biol. Chem., 1979, 354: 10 830–10 838

    Google Scholar 

  9. Ruoslahti E, Pierschbacher M D. New Perspectives in Cell Adhesion: RGD and Integrins [J]. Science, 1987, 238: 491–497

    Article  Google Scholar 

  10. Albelda S M, Buck C A. Integrins and Other Cell Adhesion Molecules [J]. FASEB. J., 1990, 4: 2 868–2 880

    Google Scholar 

  11. Travis J. Biotech Gets a Grip on Cell Adhesion [J]. Science, 1993, 260: 906–908

    Article  Google Scholar 

  12. Kammerer P W, Heller M, Brieger J, et al. Immobilisation of Linear and Cyclic RGD-peptides on Titanium Surfaces and Their Impact on Endothelial Cell Adhesion and Proliferation [J]. Eur. Cells. Mater., 2011, 21: 364–372

    Google Scholar 

  13. Shu X Z, Ghosh K, Liu Y, et al. Attachment and Spreading of Fibroblasts on an RGD Peptide-modified Injectable Hyaluronan Hydrogel [J]. J. Biomed. Mater. Res. A, 2004, 68: 365–375

    Article  Google Scholar 

  14. Li B, Chen J X, Wang J H C. RGD Peptide-conjugated poly (dimethylsiloxane) Promotes Adhesion, Proliferation, and Collagen Secretion of Human Fibroblasts [J]. J. Biomed. Mater. Res. A, 2006, 79: 989–998

    Article  Google Scholar 

  15. Hersel U, Dahmen C, Kessler H. RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond [J]. Biomaterials, 2003, 24: 4 385–4 415

    Article  Google Scholar 

  16. Davis D H, Giannoulis C S, Johnsonb R W, et al. Immobilization of RGD to Silicon Surfaces for Enhanced Cell Adhesion and Proliferation[J]. Biomaterials, 2002, 23: 4 019–4 027

    Article  Google Scholar 

  17. Kafi M A, El-Said W A, Kim T H, et al. Cell Adhesion, Spreading, and Proliferation on Surface Functionalized with RGD Nanopillar Arrays [J]. Biomaterials, 2012, 33: 731–739

    Article  Google Scholar 

  18. Puleo D A, Bizios R. RGDS Tetrapeptide Binds to Osteoblasts and Inhibits Fibronectin-mediated Adhesion [J]. Bone, 1991, 12:271–276

    Article  Google Scholar 

  19. Rezania A, Thomas C H, Branger A B, et al. The Detachment Strength and Morphology of Bone Cells Contacting Materials Modified with a Peptide Sequence Found within Bone Sialoprotein [J]. J. Biomed. Mater. Res., 1997, 37:9–19

    Article  Google Scholar 

  20. Massia S, Hubbell J. Covalent Surface Immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing Peptides to Obtain Well-defined Cell-adhesive Substrates [J]. Anal. Biochem., 1990, 187: 292–301

    Article  Google Scholar 

  21. Qiongjiao Y, Yixia Y, Binbin L. Use New PLGL-RGD-NGF Nerve Conduits for Promoting Peripheral Nerve Regeneration [J]. Biomedical Engineering Online, 2012, 11: 36–40

    Article  Google Scholar 

  22. Wohlrab S, Müller S, Schmidt A, et al. Cell Adhesion and Proliferation on RGD-modified Recombinant Spider Silk Proteins [J]. Biomaterials, 2012, 33: 6 650–6 659

    Article  Google Scholar 

  23. Wacker B K, Alford S K, Scott E A, et al. Endothelial Cell Migration on RGD-peptide-containing PEG Hydrogels in the Presence of Sphingosine 1-Phosphate [J]. Biophysical J., 2008, 94: 273–285

    Article  Google Scholar 

  24. Zayzafoon M, Stell C, Irwin R, et al. Extracellular Glucose Influences Osteoblast Differentiation and c-jun Expression [J]. J. Cell Bioche., 2000, 79:301–310

    Article  Google Scholar 

  25. Li H H, He B, Peng H, et al. Effects of Pyrroloquinoline Quinone on Proliferation and Expression of c-fos, c-jun, CREB and PCNA in Cultured Schwann Cells [J]. Zhonghua Zheng Xing Wai Ke Za Zhi, 2011, 27: 298–303

    Google Scholar 

  26. Peris L, Thery M, Faure J, et al. Tubulin Tyrosination is a Major Factor Affecting the Recruitment of CAP-Gly Proteins at Microtubule Plus Ends[J]. J. Cell Biol., 2006, 174: 839–849

    Article  Google Scholar 

  27. Ramey V H, Wang H W, Nakajima Y, et al. The Dam1 Ring Binds to the E-hook of Tubulin and Diffuses Along the Microtubule[J]. Mol. Biol. Cell, 2011, 22: 457–466

    Article  Google Scholar 

  28. Trinczek B, Ebneth A, Mandelkow E M, et al. Tau Regulates the Attachment/Detachment but not the Speed of Motors in Microtubule-Dependent Transport of Single Vesicles and Organelles [J]. J. Cell. Sci., 1999, 112: 2 355–2 367

    Google Scholar 

  29. Fuhrmann-Stroissnigg H, Noiges R, Descovich L, et al. The Light Chains of Microtubule-associated Proteins MAP1A and MAP1B Interact with α1-syntrophin in the Central and Peripheral Nervous System [J]. PLos One, 2012, 7: 49 722–49 727

    Article  Google Scholar 

  30. Liu W Q, Martinez J A, Durand J, et al. RGD-mediated Adhesive Interactions are Important for Peripheral Axon Outgrowth in Vivo [J]. Neurobiol. Dis., 2009, 34:11–22

    Article  Google Scholar 

  31. Afshari F T, Kwok J C, White L. Schwann Cell Migration Is Integrin-Dependent and Inhibited by Astrocyte-produced Aggrecan [J]. Glia, 2010, 58: 857–869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Qiu  (邱彤).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Qiu, T., Xie, L. et al. RGD gifted PDLLA-PRGD conduits promotes the sciatic nerve regeneration. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 620–625 (2014). https://doi.org/10.1007/s11595-014-0968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-0968-6

Key words

Navigation