Skip to main content

Advertisement

Log in

Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The current study aimed to enhance the efficacy of peripheral nerve regeneration using a biodegradable porous neural guidance conduit as a carrier to transplant allogeneic Schwann cells (SCs). The conduit was prepared from polyurethane (PU) and gelatin nanofibrils (GNFs) using thermally induced phase separation technique and filled with melatonin (MLT) and platelet-rich plasma (PRP). The prepared conduit had the porosity of 87.17 ± 1.89%, the contact angle of 78.17 ± 5.30° and the ultimate tensile strength and Young’s modulus of 5.40 ± 0.98 MPa and 3.13 ± 0.65 GPa, respectively. The conduit lost about 14% of its weight after 60 days in distilled water. The produced conduit enhanced the proliferation of SCs demonstrated by a tetrazolium salt-based assay. For functional analysis, the conduit was seeded with 1.50 × 104 SCs (PU/GNFs/PRP/MLT/SCs) and implanted into a 10-mm sciatic nerve defect of Wistar rat. Three control groups were used: (1) PU/GNFs/SCs, (2) PU/GNFs/PRP/SCs, and (3) Autograft. The results of sciatic functional index, hot plate latency, compound muscle action potential amplitude and latency, weight-loss percentage of wet gastrocnemius muscle and histopathological examination using hematoxylin–eosin and Luxol fast blue staining, demonstrated that using the PU/GNFs/PRP/MLT conduit to transplant SCs to the sciatic nerve defect resulted in a higher regenerative outcome than the PU/GNFs and PU/GNFs/PRP conduits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasipour-Dalivand S, Mohammadi R, Mohammadi V (2015) Effects of local administration of platelet rich plasma on functional recovery after bridging sciatic nerve defect using silicone rubber chamber; an experimental study. Bull Emerg Trauma 3:1

    PubMed  PubMed Central  Google Scholar 

  • Atik B, Erkutlu I, Tercan M, Buyukhatipoglu H, Bekerecioglu M, Pence S (2011) The effects of exogenous melatonin on peripheral nerve regeneration and collagen formation in rats. J Surg Res 166:330–336

    Article  CAS  PubMed  Google Scholar 

  • Chan-Chan L, Solis-Correa R, Vargas-Coronado R, Cervantes-Uc J, Cauich-Rodríguez J, Quintana P, Bartolo-Pérez P (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 6:2035–2044

    Article  CAS  PubMed  Google Scholar 

  • Chang HM, Liu CH, Hsu WM, Chen LY, Wang HP, Wu TH, Chen KY, Ho WH, Liao WC (2014) Proliferative effects of melatonin on Schwann cells: implication for nerve regeneration following peripheral nerve injury. J Pineal Res 56:322–332

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Dong R, Ge J, Guo B, Ma PX (2015) Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering. ACS Appl Mater Interfaces 7:28273–28285

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Li B, Chen B, Shao Y, Luo Q, Shi X, Chen Y (2016) Thymoquinone alleviates the experimental diabetic peripheral neuropathy by modulation of inflammation. Sci Rep 6:31656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corfas G, Velardez MO, Ko C-P, Ratner N, Peles E (2004) Mechanisms and roles of axon-Schwann cell interactions. J Neurosci 24:9250–9260

    Article  CAS  PubMed  Google Scholar 

  • Cui T, Yan Y, Zhang R, Liu L, Xu W, Wang X (2008) Rapid prototyping of a double-layer polyurethane–collagen conduit for peripheral nerve regeneration. Tissue Eng Part C Methods 15:1–9

    Article  Google Scholar 

  • Dai LG, Huang GS, Hsu Sh (2013) Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transpl 22:2029–2039

    Article  Google Scholar 

  • Danielsen N, Pettmann B, Vahlsing H, Manthorpe M, Varon S (1988) Fibroblast growth factor effects on peripheral nerve regeneration in a silicone chamber model. J Neurosci Res 20:320–330

    Article  CAS  PubMed  Google Scholar 

  • Davis JB, Stroobant P (1990) Platelet-derived growth factors and fibroblast growth factors are mitogens for rat Schwann cells. J Cell Biol 110:1353–1360

    Article  CAS  PubMed  Google Scholar 

  • De Luca AC, Lacour SP, Raffoul W, Di Summa PG (2014) Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration? Neural Regen Res 9:1943

    PubMed  PubMed Central  Google Scholar 

  • De Ruiter GC, Malessy MJ, Yaszemski MJ, Windebank AJ, Spinner RJ (2009) Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 26:E5

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijkstra JR, Meek MF, Robinson PH, Gramsbergen A (2000) Methods to evaluate functional nerve recovery in adult rats: walking track analysis, video analysis and the withdrawal reflex. J Neurosci Methods 96:89–96

    Article  CAS  PubMed  Google Scholar 

  • El-Shekeil Y, Sapuan S, Abdan K, Zainudin E (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303

    Article  CAS  Google Scholar 

  • Evans PJ, Mackinnon SE, Best TJ, Wade JA, Awerbuck DC, Makino AP, Hunter DA, Midha R (1995) Regeneration across preserved peripheral nerve grafts. Muscle Nerve 18:1128–1138

    Article  CAS  PubMed  Google Scholar 

  • Farrag TY, Lehar M, Verhaegen P, Carson KA, Byrne PJ (2007) Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model. Laryngoscope 117:157–165

    Article  PubMed  Google Scholar 

  • Frattini F, Pereira Lopes FR, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, Baptista AF, Melo PA, Martinez AMB (2012) Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Eng Part A 18:2030–2039

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539

    Article  CAS  PubMed  Google Scholar 

  • Gristina AG, Naylor PT, Myrvik QN (1990) Biomaterial-centered infections: microbial adhesion versus tissue integration. In: Wadström T, Eliasson I, Holder I, Ljungh A (eds) Pathogenesis of wound and biomaterial-associated infections. Springer, London, pp 193–216

    Chapter  Google Scholar 

  • Kajikawa Y, Morihara T, Sakamoto H, Ki Matsuda, Oshima Y, Yoshida A, Nagae M, Arai Y, Kawata M, Kubo T (2008) Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol 215:837–845

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Li X, Cai Z, Yang N, Liu Y, Shu J, Pan L, Zuo P (2008) Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell Mol Neurobiol 28:569–579

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30:2252–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater 2013:3

    Google Scholar 

  • Lu W, Ma M, Xu H, Zhang B, Cao X, Guo Y (2015) Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Mater Lett 140:1–4

    Article  CAS  Google Scholar 

  • Luo L, Gan L, Liu Y, Tian W, Tong Z, Wang X, Huselstein C, Chen Y (2015) Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect. Biochem Biophys Res Commun 457:507–513

    Article  CAS  PubMed  Google Scholar 

  • Naseri-Nosar M, Salehi M, Ghorbani S, Beiranvand SP, Goodarzi A, Azami M (2016) Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellulose 23:3239–3248

    Article  Google Scholar 

  • Naseri-Nosar M, Salehi M, Hojjati-Emami S (2017) Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int J Biol Macromol 103:701–708

    Article  CAS  PubMed  Google Scholar 

  • Nectow AR, Marra KG, Kaplan DL (2012) Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev 18:40–50

    Article  CAS  PubMed  Google Scholar 

  • Odaci E, Kaplan S (2009) Melatonin and nerve regeneration. Int Rev Neurobiol 87:317–335

    Article  CAS  PubMed  Google Scholar 

  • Ogata T, Yamamoto SI, Tanaka S (2006) Signaling axis in schwann cell proliferation and differentiation. Mol Neurobiol 33:51–61

    Article  CAS  PubMed  Google Scholar 

  • Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887

    Article  CAS  PubMed Central  Google Scholar 

  • Pfister LA, Papaloïzos M, Merkle HP, Gander B (2007) Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 12:65–82

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ, Davis JB, Stroobant P, Land H (1989) Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol 109:3419–3424

    Article  CAS  PubMed  Google Scholar 

  • Salehi M, Naseri-Nosar M, Amani A, Azami M, Tavakol S, Ghanbari H (2015) Preparation of Pure PLLA, Pure Chitosan, and PLLA/Chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. Int J Polym Mater 64:675–682

    Article  CAS  Google Scholar 

  • Salehi M, Naseri-Nosar M, Azami M, Nodooshan SJ, Arish J (2016a) Comparative study of poly(l-lactic acid) scaffolds coated with chitosan nanoparticles prepared via ultrasonication and ionic gelation techniques. Tissue Eng Regen Med 13:498–506

    Article  CAS  Google Scholar 

  • Salehi M, Farzamfar S, Bastami F, Tajerian R (2016b) Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed Eng (Singap.) 28:1650035

    CAS  Google Scholar 

  • Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Hamidieh A-A, Amani A, Farzamfar S, Ai J (2017) Sciatic nerve regeneration by transplantation of schwann cells via erythropoietin controlled-releasing polylactic acid/multi-walled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomed Mater Res B Appl Biomater

  • Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10:1

    CAS  Google Scholar 

  • Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 19:5731–5740

    CAS  PubMed  Google Scholar 

  • Stavisky RC, Britt JM, Zuzek A, Truong E, Bittner GD (2005) Melatonin enhances the in vitro and in vivo repair of severed rat sciatic axons. Neurosci Lett 376:98–101

    Article  CAS  PubMed  Google Scholar 

  • Sun X-H, Che Y-Q, Tong X-J, Zhang L-X, Feng Y, Xu A-H, Tong L, Jia H, Zhang X (2009) Improving nerve regeneration of acellular nerve allografts seeded with SCs bridging the sciatic nerve defects of rat. Cell Mol Neurobiol 29:347–353

    Article  PubMed  Google Scholar 

  • Turgut M, Kaplan S (2011) Effects of melatonin on peripheral nerve regeneration. Recent Pat Endocr Metab Immune Drug Discov 5:100–108

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yaszemski MJ, Knight AM, Gruetzmacher JA, Windebank AJ, Lu L (2009) Photo-crosslinked poly (ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations. Acta Biomater 5:1531–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241

    Article  CAS  Google Scholar 

  • Webber CA, Christie KJ, Cheng C, Martinez JA, Singh B, Singh V, Thomas D, Zochodne DW (2011) Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia 59:1503–1517

    Article  PubMed  Google Scholar 

  • Wu M, Zhao G, Yang X, Peng C, Zhao J, Liu J, Li R, Gao Z (2014) Puerarin accelerates neural regeneration after sciatic nerve injury. Neural Regen Res 9:589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Zhao W, Zhu C, Zhang X, Ye D, Zhang W, Zhou Y, Jiang X, Zhang Z (2011) Sciatic nerve regeneration in rats by a promising electrospun collagen/poly (ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neurosci 12:1

    Article  Google Scholar 

Download references

Acknowledgement

This study was funded by Tehran University of Medical Sciences (Grant No. 95-01-87-31294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Ai.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Naseri-Nosar, M., Ebrahimi-Barough, S. et al. Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells. Cell Mol Neurobiol 38, 703–713 (2018). https://doi.org/10.1007/s10571-017-0535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0535-8

Keywords

Navigation