Skip to main content
Log in

Stress-induced evolution of anisotropic thermal conductivity of dry granular materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Various factors, such as the volumetric fraction of constituents, mineralogy, and pore fluids, affect heat flow in granular materials. Although the stress applied on granular materials controls the formation of major pathways for heat flow, few studies have focused on a detailed investigation of its significance with regard to the thermal conductivity and anisotropy of the materials. This paper presents a numerical investigation of the stress-induced evolution of anisotropic thermal conductivity of dry granular materials with supplementary experimental results. Granular materials under a variety of stress conditions in element testing are analyzed by the three-dimensional discrete element method, and quantitative variations in their anisotropic effective thermal conductivity are calculated via the network model and conductivity tensor measurements. Results show that the directional development of contact area and fabric under anisotropic stress conditions leads to the evolution of anisotropy in thermal conductivity. The anisotropy induced in thermal conductivity by shear stress is higher than that induced by compressive stress because shear stress causes more significant changes in microstructural configurations and boundary conditions. The shear-stress-induced evolution of anisotropy between principal thermal conductivities depends on dilatancy as well as shearing mode, and the shear-driven discontinuity localizes the conductivity. Factors involved in the stress-induced evolution and their implications on the thermal conductivity characterization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abdulagatova Z, Abdulagatov IM, Emirov VN (2009) Effect of temperature and pressure on the thermal conductivity of sandstone. Int J Rock Mech Min Sci 46(6):1055–1071. doi:10.1016/j.ijrmms.2009.04.011

    Article  Google Scholar 

  2. Andersland OB, Ladanyi B (2004) Frozen ground engineering, 2nd edn. Wiley, New York

    Google Scholar 

  3. Batchelor GK, O’Brien RW (1977) Thermal or electrical conduction through a granular material. Proc R Soc Lond A 355(1682):313–333

    Article  Google Scholar 

  4. Becker BR, Misra A, Fricke BA (1992) Development of correlations for soil thermal conductivity. Int Commun Heat Mass Transf 19(1):59–68. doi:10.1016/0735-1933(92)90064-o

    Article  Google Scholar 

  5. Chen S (2008) Thermal conductivity of sands. Heat Mass Transf 44(10):1241–1246. doi:10.1007/s00231-007-0357-1

    Article  Google Scholar 

  6. Cortes DD, Martin AI, Yun TS, Francisca FM, Santamarina JC, Ruppel C (2009) Thermal conductivity of hydrate-bearing sediments. J Geophys Res 114:B11103. doi:10.1029/2008jb006235

    Article  Google Scholar 

  7. Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(2):443–458. doi:10.1139/t04-106

    Article  Google Scholar 

  8. Davis MG, Chapman DS, Van Wagoner TM, Armstrong PA (2007) Thermal conductivity anisotropy of metasedimentary and igneous rocks. J Geophys Res 112(B5):B05216. doi:10.1029/2006jb004755

    Article  Google Scholar 

  9. Demirci A, Görgülü K, Durutürk YS (2004) Thermal conductivity of rocks and its variation with uniaxial and triaxial stress. Int J Rock Mech Min Sci 41(7):1133–1138. doi:10.1016/j.ijrmms.2004.04.010

    Article  Google Scholar 

  10. El Shamy U, De Leon O, Wells R (2011) DEM study on effect of shear-induced anisotropy on thermal conductivity of granular soils. Int J Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000165

    Google Scholar 

  11. Esch DC (2004) Thermal analysis, construction and monitoring methods for frozen ground, vol 492. American Society of Civil Engineers, Resteon

    Google Scholar 

  12. Espinoza D, Kim S, Santamarina J (2011) CO2 geological storage—geotechnical implications. KSCE J Civil Eng 15(4):707–719. doi:10.1007/s12205-011-0011-9

    Article  Google Scholar 

  13. Garrett D, Ban H (2011) Compressive pressure dependent anisotropic effective thermal conductivity of granular beds. Granul Matter 13(5):685–696. doi:10.1007/s10035-011-0273-4

    Article  Google Scholar 

  14. Gori F, Corasaniti S (2004) Theoretical prediction of the thermal conductivity and temperature variation inside mars soil analogues. Planet Space Sci 52(1–3):91–99. doi:10.1016/j.pss.2003.08.009

    Article  Google Scholar 

  15. Gustafsson SE et al (1979) Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. J Phys D Appl Phys 12(9):1411

    Article  Google Scholar 

  16. Holtzman R, Silin DB, Patzek TW (2010) Frictional granular mechanics: a variational approach. Int J Numer Meth Eng 81(10):1259–1280. doi:10.1002/nme.2727

    MathSciNet  MATH  Google Scholar 

  17. Itasca (2003) PFC(3D) (Particle Flow Code in three dimensions) Version 3.0, Minneapolis

  18. Jang E-R, Jung Y-H, Chung C-K (2010) Stress ratio-fabric relationships of granular soils under axi-symmetric stress and plane-strain loading. Comput Geotech 37(7–8):913–929. doi:10.1016/j.compgeo.2010.07.010

    Article  Google Scholar 

  19. Johansen O (1975) Thermal conductivity of soils. University of Trondheim, Trondheim

    Google Scholar 

  20. Johnston I, Narsilio G, Colls S (2011) Emerging geothermal energy technologies. KSCE J Civil Eng 15(4):643–653. doi:10.1007/s12205-011-0005-7

    Article  Google Scholar 

  21. Kanuparthi S, Subbarayan G, Siegmund T, Sammakia B (2008) An efficient network model for determining the effective thermal conductivity of particulate thermal interface materials. IEEE Trans Compon Packag Technol 31(3):611–621

    Article  Google Scholar 

  22. Kim J-S, Kwon S-K, Sanchez M, Cho G-C (2011) Geological storage of high level nuclear waste. KSCE J Civil Eng 15(4):721–737. doi:10.1007/s12205-011-0012-8

    Article  Google Scholar 

  23. Kim DH, Kim YJ, Lee J-S, Yun TS (2011) Thermal and electrical response of unsaturated hydrophilic and hydrophobic granular materials. Geotech Test J 34(5):562–570. doi:10.1520/GTJ103601

    Google Scholar 

  24. Krzewinski TG, Tart JRG (1985) Thermal design considerations in frozen ground engineering. State of the Practice Report. Tech Council Cold Reg Eng ASCE

  25. Midttomme K, Roaldset E, Aagaard P (1998) Thermal conductivity of selected claystones and mudstones from England. Clay Miner 33(1):131–145

    Article  Google Scholar 

  26. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699

    Article  Google Scholar 

  27. Ng TT (2005) Behavior of gravity deposited granular material under different stress paths. Can Geotech J 42(6):1644–1655. doi:10.1139/t05-080

    Article  Google Scholar 

  28. Ng TT (2006) Input parameters of discrete element methods. J Eng Mech 132(7):723–729. doi:10.1061/(asce)0733-9399(2006)132:7(723

    Article  Google Scholar 

  29. O’Sullivan C, Bray JD (2004) Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng Comput 21(2–4):278–303

    MATH  Google Scholar 

  30. Reinecke BN, Shan JW, Suabedissen KK, Cherkasova AS (2008) On the anisotropic thermal conductivity of magnetorheological suspensions. J Appl Phys 104(2):023507. doi:10.1063/1.2949266

    Article  Google Scholar 

  31. Rognon P, Einav I, Bonivin J, Miller T (2010) A scaling law for heat conductivity in sheared granular materials. EPL (Europhys Lett) 89(5):58006

    Article  Google Scholar 

  32. Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4):601–614

    Article  Google Scholar 

  33. Santamarina JC (2001) Soils and waves. Wiley, New York

    Google Scholar 

  34. Singh DN, Devid K (2000) Generalized relationships for estimating soil thermal resistivity. Exp Therm Fluid Sci 22(3–4):133–143. doi:10.1016/s0894-1777(00)00020-0

    Article  Google Scholar 

  35. Tarnawski VR, Leong WH, Gori F, Buchan GD, Sundberg J (2002) Inter-particle contact heat transfer in soil systems at moderate temperatures. Int J Energy Res 26(15):1345–1358. doi:10.1002/er.853

    Article  Google Scholar 

  36. Tarnawski VR, Momose T, Leong WH (2009) Estimation of quartz content in soils from thermal conductivity data. Géotechnique 59(4):331–338

    Article  Google Scholar 

  37. Tarnawski V, Momose T, Leong WH, Bovesecchi G, Coppa P (2009) Thermal conductivity of standard sands. Part I. Dry-state conditions. Int J Thermophys 30(3):949–968. doi:10.1007/s10765-009-0596-0

    Article  Google Scholar 

  38. Tehranian F, Abdou MA, Tillack MS (1994) Effect of external pressure on particle bed effective thermal conductivity. J Nucl Mater 212–215(Part 2):885–890. doi:10.1016/0022-3115(94)90963-6

    Article  Google Scholar 

  39. Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53

    Article  Google Scholar 

  40. Thornton C, Barnes DJ (1986) Computer simulated deformation of compact granular assemblies. Acta Mech 64:45–61

    Article  Google Scholar 

  41. Vargas WL, McCarthy JJ (2002) Stress effects on the conductivity of particulate beds. Chem Eng Sci 57(15):3119–3131. doi:10.1016/s0009-2509(02)00176-8

    Article  Google Scholar 

  42. Weidenfeld G, Weiss Y, Kalman H (2004) A theoretical model for effective thermal conductivity (ETC) of particulate beds under compression. Granul Matter 6(2):121–129. doi:10.1007/s10035-004-0170-1

    Article  MATH  Google Scholar 

  43. Yan WM (2009) Fabric evolution in a numerical direct shear test. Comput Geotech 36(4):597–603. doi:10.1016/j.compgeo.2008.09.007

    Article  Google Scholar 

  44. Yimsiri S, Soga K (2000) Micromechanics-based stress-strain behaviour of soils at small strains. Géotechnique 50(5):559–571

    Article  Google Scholar 

  45. Yimsiri S, Soga K (2011) Effects of soil fabric on behaviors of granular soils: microscopic modeling. Comput Geotech 38(7):861–874. doi:10.1016/j.compgeo.2011.06.006

    Article  Google Scholar 

  46. Yun TS, Evans TM (2010) Three-dimensional random network model for thermal conductivity in particulate materials. Comput Geotech 37(7–8):991–998. doi:10.1016/j.compgeo.2010.08.007

    Article  Google Scholar 

  47. Yun TS, Evans TM (2011) Evolution of at-rest lateral stress for cemented sands: experimental and numerical investigation. Granul Matter 13(5):671–683

    Article  Google Scholar 

  48. Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granul Matter 10(3):197–207. doi:10.1007/s10035-007-0051-5

    Article  MATH  Google Scholar 

  49. Yun TS, Dumas B, Santamarina JC (2011) Heat transport in granular materials during cyclic fluid flow. Granul Matter 13(1):29–37. doi:10.1007/s10035-010-0220-9

    Article  Google Scholar 

  50. Zhao X, Evans TM (2009) Discrete simulations of laboratory loading conditions. Int J Geomech 9(4):169–178

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Eui-Ryong Jang at Seoul National University for his valuable comments on the DEM simulations. The expert opinion from the anonymous reviewers is greatly appreciated. Financial support for this work was provided by a grant from a Strategic Research Project Development of Extreme Cold Region Site Investigation and Monitoring System funded by the Korea Institute of Construction Technology (KICT), the basic science research program through National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0005593), and the Korea Institute of Geosciences and Mineral Resources (KIGAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Sup Yun.

Appendices

Appendix A: Estimation of thermal conductivity via the thermal network model

Suppose that the granular assembly comprises a web of particles interconnected by thermal conductors. When the sum of heat flow (q ij ) of all the connected thermal conductors from particles i and j is in equilibrium with a temperature difference (T i  − T j ) and thermal conductance (C ij ) between the particles, energy conservation leads to the following steady-state equation:

$$ \sum\limits_{i \to j} {q_{ij} } = \sum\limits_{i \to j} {C_{ij} (T_{i} - T_{j} ) = 0} $$
(a1)

The initial temperature at each particle is determined by imposing constant temperature at the two boundary planes (e.g., top and bottom planes for \( k_{zz}^{\text{eff}} \)) and then performing successive iterations until the variation of temperature in each step becomes lower than a prescribed value. The thermal energy between particles is determined by the particle conductance (\( C_{i}^{\text{p}} \)) and contact conductance (\( C_{ij}^{\text{c}} \)), given by the following equation:

$$ q_{ij} = C_{ij}^{\text{eff}} \cdot \Updelta T = \left[ {\frac{1}{{C_{i}^{\text{p}} }} + \frac{1}{{C_{ij}^{\text{c}} }} + \frac{1}{{C_{j}^{\text{p}} }}} \right]^{ - 1} \left[ {T_{i} - T_{j} } \right] $$
(a2)

The neighboring particles can be considered to be either connected by a circular contact (i.e., overlapped) or separated (i.e., not overlapped), depending on the distance between particles (h ij ), which is given by the following relation:

$$ h_{ij} = D - (r_{i} + r_{j} ) $$
(a3)

where D is the distance between the particle centers, and r i and r j are the radii of particles i and j, respectively. The particles are interconnected when h ij  ≤ 0, and separated otherwise. It is assumed that heat transfer occurs between particles when h ij is lower than εeff:

$$ \varepsilon^{\text{eff}} = \varepsilon \cdot \frac{{2r_{1} r_{2} }}{{r_{1} + r_{2} }} $$
(a4)

where ε is the cut-off range parameter to define the effective zone of heat transfer. Following the calculation of the temperature of particles in a random assembly by iterating Eq. (a1) according to conductance as described in [3, 46], the total heat flow of all the particles is determined by Eq. (a2). Finally, the effective thermal conductivity of a given granular assembly k eff is given by using Fourier’s law.

$$ k^{\text{eff}} = \frac{Q \cdot H}{A} \cdot \frac{1}{\Updelta T}\left[ \frac{W}{mK} \right] $$
(a5)

where Q is the total heat flow out of the boundary plane; H and A are the height and cross-sectional area of the assembly, respectively; and ΔT is the temperature difference between the two boundary planes.

Appendix B: Numerical formulation of the thermal conductivity tensor measurements

Assume a particle and a contact represent a heat reservoir and a one-dimensional thermal pipe, respectively. If we regard that heat flow occurs only in the thermal pipes, the average heat flux in a volume V of granular material is defined by a sum over all M pipes (see [17] for detailed derivation):

$$ {q_{i}} = \frac{1}{V}\sum\limits_{p = 1}^{M} {q_{i}^{(p)} A^{(p)} l^{(p)} }$$
(b1)

where A (p) and l (p) are the length and cross-sectional area of pipe p, respectively, and the heat flux in the pipe \( q_{i}^{(p)} \) is given by the following relation:

$$ q_{i} = - \frac{{\Updelta Tn_{i} }}{\eta LA} $$
(b2)

where ΔT is the temperature difference between the two reservoirs on each end of the pipe; η i is the outward unit normal vector; and L and η are the length and the thermal resistance per unit length of the pipe, respectively.

If the mean temperature gradient in the material, \( \partial T/\partial x_{j} \), is applied at the microlevel within each pipe, then the temperature difference is given as shown below.

$$ \Updelta T = Ln_{j} \frac{\partial T}{{\partial x_{j} }} $$
(b3)

Substituting Eqs. (b2) and (b3) into (b1) gives the following equation:

$$ q_{i} = - \left[ {\frac{1}{V}\sum\limits_{p = 1}^{M} \frac{{l^{(p)}} n_{i}^{(p)} n_{j}^{(p)}} {\eta^{(p)}}} \right] \frac{\partial T}{{\partial x_{j} }} $$
(b4)

The heat flux vector and the temperature gradient are related by Fourier’s law for a continuum, as shown below:

$$ q_{i} = - k_{ij} \frac{\partial T}{{\partial x_{j} }} $$
(b5)

By comparing Eq. (b4) with Fourier’s law, Eq. (b5), the thermal conductivity tensor of the granular material is given by the following equation:

$$ k_{ij}^{\text{eff}} = \frac{1}{V}\sum\limits_{p = 1}^{M} \frac{{l^{(p)}} n_{i}^{(p)} n_{j}^{(p)}} {\eta^{(p)}}$$
(b6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choo, J., Kim, Y.J., Lee, J.H. et al. Stress-induced evolution of anisotropic thermal conductivity of dry granular materials. Acta Geotech. 8, 91–106 (2013). https://doi.org/10.1007/s11440-012-0174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-012-0174-7

Keywords

Navigation