Skip to main content

Advertisement

Log in

Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The development of mycorrhized pine seedlings grown in the presence of lead was assessed in order to investigate how higher plants can tolerate lead pollution in the environment. Examination with scanning electron microscopy (SEM) revealed that Pb uptake was prominent in the roots, while a smaller amount was found in pine needles, which requires symplastic uptake and root-to-shoot transfer. Lead was concentrated in nanocrystalline aggregates attached to the cell wall and, according to elemental microanalyses, is associated with phosphorus and chlorine. The identification of the nanocrystalline phase in roots and needles was performed by transmission electron microscopy (TEM) and synchrotron X-ray micro-diffraction (μ-XRD), revealing the presence of pyromorphite, Pb5[PO4]3(Cl, OH), in both roots and needles. The extracellular embedding of pyromorphite within plant cell walls, featuring an indented appearance of the cell wall due to a callus-like outcrop of minerals, suggests a biogenic origin. This biomineralization is interpreted as a defense mechanism of the plant against lead pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antosiewicz D, Wierzbicka M (1999) Localization of lead in Allium cepa L. cells by electron microscopy. J Microsc 195:139–146

    Article  CAS  Google Scholar 

  • Bizo ML, Formann S, Krause K, Roşu C, Kothe E (2013) Resistance of young stresses caused by heavy metals such as Cs and Cd. Environ Eng Manag J 12:325–330

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67(6):1127–1155

    Article  CAS  Google Scholar 

  • Castro L, Blázquez ML, Muñoz JÁ, González González F, Ballester A (2014) Mechanism and application of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:1–18

    Article  Google Scholar 

  • Chilvers GA, Douglass PA, Lapeyrie FF (1986) A paper-sandwich technique for rapid synthesis of ectomycorrhizas. New Phytol 103:397–402

    Article  Google Scholar 

  • Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of Pb-P grains in the root of Agrostis capillaris L. by ATEM and EXAFS. Mineral Mag 63(6):777–789

    Article  CAS  Google Scholar 

  • Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37(11):2403–2412

    Article  CAS  Google Scholar 

  • Dai YS, Hughes JM (1989) Crystal-structure refinements of vanadinite and pyromorphite. Can Mineral 27:189–192

    CAS  Google Scholar 

  • Davison BH, Parks J, Davis MF, Donohoe BS (2013) Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. John Wiley & Sons, Ltd., Chichester, pp 23–38. doi:10.1002/9780470975831.ch3

    Chapter  Google Scholar 

  • Ensikat HJ, Geisler T, Weigend M (2016) A first report of hydroxylated apatite as structural biomineral in Loasaceae—plants’ teeth against herbivores. Sci Rep 6:26073

    Article  CAS  Google Scholar 

  • Fuente V, Rufo L, Juárez BH, Menéndez N, García-Hernández M, Salas-Colera E, Espinosa A (2016) Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. J Struct Biol 193(1):23–32

    Article  CAS  Google Scholar 

  • Gao P, Wu Y, Wu L (2016) Co-assembly of polyoxometalates and peptides towards biological applications. Soft Matter 12(41):8464–8479

    Article  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture 3rd Edition, Springer, pp:65–113

  • Haferburg G, Kloess G, Schmitz W, Kothe E (2008) “Ni-struvite”—a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72(3):517–523

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  Google Scholar 

  • Hammersley AP, Svensson SO, Thompson A (1994) Calibration and correction of spatial distortions in 2D detector systems. Nucl Instrum Meth A346:312–321

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:235–248

    Article  Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    Article  CAS  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Blamey FPC, Auchterlonie GJ, Guo YN, Menzies NW (2008) Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Environ Sci Technol 42(12):4595–4599

    Article  CAS  Google Scholar 

  • Kothe E, Schlunk I, Senftleben D, Krause K (2013) Ectomycorrhiza-specific gene expression. In: Kempken F (ed) The Mycota XI: agricultural applications. Springer, Berlin, pp 295–312

    Chapter  Google Scholar 

  • Kumari D, Qian XY, Pan X, Achal V, Li Q, Gadd GM (2016) Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv Appl Microbiol 94:79–108

    Article  Google Scholar 

  • Laperche V, Logan TJ, Gaddam P, Traina S (1997) Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ Sci Technol 31(10):2745–2753

    Article  CAS  Google Scholar 

  • Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748

  • Liang X, Kierans M, Ceci A, Hillier S, Gadd GM (2016) Phosphatase-mediated bioprecipitation of lead by soil fungi. Environ Microbiol 18(1):219–231

    Article  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  CAS  Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505

    Article  CAS  Google Scholar 

  • Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153(2):323–332

    Article  CAS  Google Scholar 

  • Miretzky P, Fernandez-Cirelli A (2008) Phosphates for Pb immobilization in soils: a review. Environ Chem Lett 6(3):121–133

    Article  CAS  Google Scholar 

  • Orlovich DA, Ashford AE (1993) Polyphosphate granules are an artefact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma 173(3):91–102

    Article  CAS  Google Scholar 

  • Phieler R, Merten D, Roth M, Büchel G, Kothe E (2015) Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Environ Sci Pollut Res 22(24):19408–19416

    Article  CAS  Google Scholar 

  • Prozorov T (2015) Magnetic microbes: bacterial magnetite biomineralization. Semin Cell Dev Biol 46:36–43

    Article  CAS  Google Scholar 

  • Reid N, Robson TC, Radcliffe B, Verrall M (2016) Excessive sulphur accumulation and ionic storage behaviour identified in species of acacia (Leguminosae: Mimosoideae). Ann Bot 117(4):653–666

    Article  CAS  Google Scholar 

  • Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J, Stefaniak EA, Magnin V, Ranieri V, Dumat C (2014) Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Sci Total Environ 476-477:667–676

    Article  CAS  Google Scholar 

  • Schütze E, Weist A, Klose M, Wach T, Schumann M, Nietzsche S, Merten D, Baumert J, Majzlan J, Kothe E (2013) Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil. Biogeosciences 10:3605–3614

    Article  Google Scholar 

  • Selvakumar M, Pawar HS, Francis NK, Das B, Dhara S, Chattopadhyay S (2016) Excavating the role of Aloe Vera wrapped mesoporous hydroxyapatite frame ornamentation in newly Architectured polyurethane scaffolds for Osteogenesis and guided bone regeneration with Microbial protection. ACS Appl Mater Interfaces 8(9):5941–5960

    Article  CAS  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Traina SJ, Laperche V (1999) Contaminant bioavailability in soils, sediments, and aquatic environments. Proc Natl Acad Sci U S A 96:3365–3371

    Article  CAS  Google Scholar 

  • Wei W, Wang Y, Wang Z, Han R, Li S, Wei Z, Zhang Y (2016) Stability of chloropyromorphite in ryegrass rhizosphere as affected by root-secreted low molecular weight organic acids. PLoS One 11(8):e0160628

    Article  Google Scholar 

  • Zeth K, Hoiczyk E, Okuda M (2016) Ferroxidase-mediated iron oxide Biomineralization: novel pathways to multifunctional nanoparticles. Trends Biochem Sci 41(2):190–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the excellence graduate school GSC 214 Jena School for Microbial Communication. FL thanks the Deutsche Forschungsgemeinschaft for the award of the Gottfried Wilhelm Leibniz price (LA 830/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. Bizo.

Additional information

Responsible editor: Roberto Terzano

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizo, M.L., Nietzsche, S., Mansfeld, U. et al. Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles. Environ Sci Pollut Res 24, 14455–14462 (2017). https://doi.org/10.1007/s11356-017-9020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9020-7

Keywords

Navigation