Skip to main content

Advertisement

Log in

Effective gene flow in a historically fragmented area at the southern edge of silver fir (Abies alba Mill.) distribution

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Fragmented populations at the edges of a species’ distribution can be highly exposed to the loss of genetic variation, unless sufficient gene flow maintains their genetic connectivity. Gene movements leading to successful establishment of external gametes (i.e. effective gene flow) into fragmented populations can solely be assessed by investigating the origin of natural regeneration. This study is focused on studying gene flow patterns in two silver fir stands in Central Apennines, where the species has a highly fragmented distribution. By using nuclear and chloroplast microsatellite markers, we investigated genetic variation, fine-scale spatial genetic structure, effective gene flow rates and large-scale connectivity characterizing both stands. Similar levels of genetic variation and low genetic differentiation between stands (F ST = 0.005) and across generations were found, coupled with low inbreeding and weak to absent SGS in the adult cohort (Sp < 0.003). On the other hand, substantial differences between the two stands in terms of gene flow rates were observed. Irrespective of the parentage approach used, higher gene flow rates were found in the stand located at the upper silver fir altitudinal limit, especially for seed-mediated gene flow (0.79 in the upper stand vs. 0.48 in the lower stand). Conversely, the lower stand was characterized by a higher reproductive dominance of local adults. Our findings suggest that, despite similar levels of genetic variation and generally high gene flow rates, different processes may be acting on the two stands, reflecting varying ecological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29:148–161

    Article  CAS  Google Scholar 

  • Bacles CFE, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979–990

    PubMed  Google Scholar 

  • Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628

    Article  PubMed  Google Scholar 

  • Bertolasi B, Leonarduzzi C, Piotti A, Leonardi S, Zago L, Gorian F, et al. (2015) A last stand in the Po Valley: genetic structure and gene flow patterns in Ulmus minor and U. pumila. Ann Bot 115:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99:580–591

    Article  CAS  PubMed  Google Scholar 

  • Brousseau L, Postolache D, Lascoux M, Drouzas AD, Källman T, Leonarduzzi C, et al. (2016) Local adaptation in European firs assessed through extensive sampling across altitudinal gradients in southern Europe. PLoS One 11:e0158216

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschbom J, Yanbaev Y, Degen B (2011) Efficient long-distance gene flow into an isolated relict oak stand. J Hered 102:464–472

    Article  PubMed  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Calama R, Gordo FJ, Mutke S, Montero G (2008) An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the northern plateau (Spain. Forest Ecol Manag 255:660–673

    Article  Google Scholar 

  • Chybicki IJ, Burczyk J (2010a) NM+: software implementing parentage-based models for estimating gene dispersal and mating patterns in plants. Mol Ecol Res 10:1071–1075

    Article  CAS  Google Scholar 

  • Chybicki IJ, Burczyk J (2010b) Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Mol Ecol 19:2137–2151

    Article  CAS  PubMed  Google Scholar 

  • Compostella C, Trombino L, Caccianiga M (2013) Late Holocene soil evolution and treeline fluctuations in the Northern Apennines. Quat Int 289:46–59

    Article  Google Scholar 

  • Cremer E, Ziegenhagen B, Schulerowitz K, Mengel C, Donges K, Bialozyt R, et al. (2012) Local seed dispersal in European silver fir (Abies alba Mill.): lessons learned from a seed trap experiment. Trees 26:987–996

    Article  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  CAS  PubMed  Google Scholar 

  • De Heredia UL, Venturas M, López RA, Gil L (2010) High biogeographical and evolutionary value of Canary Island pine populations out of the elevational pine belt: the case of a relict coastal population. J Biogeogr 37:2371–2383

    Article  Google Scholar 

  • Dubreuil M, Riba M, González-Martínez SC, Vendramin GG, Sebastiani F, Mayol M (2010) Genetic effects of chronic habitat fragmentation revisited: strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am J Bot 97:303–310

    Article  PubMed  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Eisenhut G (1961) Untersuchungen uber die Morphologie und Okologie der Pollenkorner heimischer und fremdlandischer Waldbaume. Forstwiss Forsch 15:1–68

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Follieri M, Giardini M, Magri D, Sadori L (1998) Palynostratigraphy of the last glacial period in the region of Central Italy. Quat Int 47(/48):3–20

    Article  Google Scholar 

  • Fuchs EJ, Hamrick JL (2011) Mating system and pollen flow between remnant populations of the endangered tropical tree, Guaiacum sanctum (Zygophyllaceae. Conserv Genet 12:175–185

    Article  Google Scholar 

  • Gallucci V, Urbinati C (2009) Dinamismi di accrescimento e sensitività climatica dell’abete bianco (Abies alba Mill.) in the European important site (SIC) at the Alpe della Luna - Bocca Trabaria (PU - Italy). Forest@ 6:85–99.

  • Gauzere J, Klein EK, Oddou-Muratorio S (2013) Ecological determinants of mating system within and between three Fagus sylvatica populations along an elevational gradient. Mol Ecol 22:5001–5015

    Article  PubMed  Google Scholar 

  • Gerber S, Mariette S, Streiff R, Bonédes C, Kremer A (2000) Comparison of microsatellites and AFLP markers for parentage analysis. Mol Ecol 9:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Gerber S, Chabrier P, Kremer A (2003) FAMOZ: a software for parentage analysis using dominant, codominant and uni-parentally inherited markers. Mol Ecol Notes 3:479–481

    Article  CAS  Google Scholar 

  • Gerber S, Chadoeuf J, Gugerli F, Lascoux M, Buiteveld J, Cottrell J, et al. (2014) High rates of gene flow by pollen and seed in oak populations across Europe. PLoS One 9:e85130

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics. Mol Ecol 19:3845–3852

  • González de Andrés E, Camarero JJ, Martínez I, Coll L (2014) Uncoupled spatiotemporal patterns of seed dispersal and regeneration in Pyrenean silver fir populations. Forest Ecol Manag 319:18–28

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. Forest Ecol Manag 197:323–335

    Article  Google Scholar 

  • Hansen OK, Kjaer ED, Vendramin GG (2005) Chloroplast microsatellite variation in Abies normandiana and simulations of causes for low differentiation among populations. Tree Genet Genomes 1:116–123

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Jamieson A, Taylor SCS (1997) Comparisons of three probability formulae for parentage exclusion. Anim Genet 28:397–400

    Article  CAS  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30

    Article  PubMed  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci 103:8096–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Knapp EE, Goedde MA, Rice KJ (2001) Pollen-limited reproduction in blue oak: implications for wind pollination in fragmented populations. Oecologia 128:48–55

    Article  Google Scholar 

  • Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885

    Article  PubMed  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, et al. (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonarduzzi C, Leonardi S, Menozzi P, Piotti A (2012) Towards an optimal sampling effort for paternity analysis in forest trees: what do the raw numbers tell us? iForest 5:18–25

    Article  Google Scholar 

  • Leonarduzzi C (2014) Molecular tools, optimal sampling strategies and biogeographical investigation towards the study of adaptive gene flow in forest trees. Università degli Studi di Parma. Dipartimento di Bioscienze. PhD thesis. Available at http://hdl.handle.net/1889/2488.

  • Lian C, Goto S, Kubo T, Takahashi Y, Nakagawa M, Hogetsu T (2008) Nuclear and chloroplast microsatellite analysis of Abies sachalinensis regeneration on fallen logs in a subboreal forest in Hokkaido, Japan. Mol Ecol 17:2948–2962

    Article  PubMed  Google Scholar 

  • Liepelt S, Kuhlenkamp V, Anzidei M, Vendramin GG, Ziegenhagen B (2001) Pitfalls in determining size homoplasy of microsatellite loci. Mol Ecol Notes 1:332–335

    Article  CAS  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Lowe AJ, Cavers S, Boshier D, Breed MF, Hollingsworth PM (2015) The resilience of forest fragmentation genetics—no longer a paradox—we were just looking in the wrong place. Heredity 115:97–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magri D, Agrillo E, Di Rita F, Furlanetto G, Pini R, Ravazzi C, et al. (2015) Holocene dynamics of tree taxa populations in Italy. Rev Palaeobot Palyno 218:267–284

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk EB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Matías L, Jump AS (2015) Asymmetric changes of growth and reproductive investment herald altitudinal and latitudinal range shifts of two woody species. Glob Chang Biol 2:882–896

    Article  Google Scholar 

  • Meagher TR, Thompson E (1986) The relationship between single parent and parent pair genetic likelihoods in genealogy reconstruction. Theor Popul Biol 29:87–106

    Article  Google Scholar 

  • Mencuccini M, Piussi P, Zanzi Sulli A (1995) Thirty years of seed production in a subalpine Norway spruce forest: patterns of temporal and spatial variation. For Ecol Manag 76:109–125

    Article  Google Scholar 

  • Nanos N, Larson K, Millerón M, Sjöstedt-de Luna S (2010) Inverse modeling for effective dispersal: do we need tree size to estimate fecundity? Ecol Model 221:2415–2424

    Article  Google Scholar 

  • Nathan R, Katul GG, Bohrer G, Kuparinen A, Soons MB, Thompson SE, et al. (2011) Mechanistic models of seed dispersal by wind. Theor Ecol 4:113–132

    Article  Google Scholar 

  • O’Connell LM, Mosseler A, Rajora OP (2006) Impacts of forest fragmentation on the reproductive success of white spruce (Picea glauca. Can J Bot 84:956–965

    Article  Google Scholar 

  • Oddou-Muratorio S, Amm A, Burczyk J, Chybicki IJ, Lewadowski A, Litkowiec M et al. (2010) Contemporary seed and pollen dispersal abilities of silver fir (Abies alba Mill.) at range margins. In: Vinceti B., Neate P. (comps.). Conference on ‘Forest ecosystem genomics and adaptation’. San Lorenzo de El Escorial (Madrid), Spain, 9–11 June 2010. Book of abstracts, p. 222.

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 19:2537–2539

    Article  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P (2009) Spruce colonization at treeline: where do those seeds come from? Heredity 103:136–145

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in effective population size from allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Postolache D, Leonarduzzi C, Piotti A, Spanu I, Roig A, Fady B, et al. (2014) Transcriptome versus genomic microsatellite markers: highly informative multiplexes for genotyping Abies alba Mill. and congeneric species. Plant Mol Biol Rep 32:750–760

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Rabasa SG, Granda E, Benavides R, Kunstler G, Espelta JM, Ogaya R, et al. (2013) Disparity in elevational shifts of European trees in response to recent climate warming. Glob Change Biol 19:2490–2499

    Article  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94:9197–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robledo-Arnuncio JJ (2011) Wind pollination over mesoscale distances: an investigation with Scots pine. New Phytol 190:222–233

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ (2012) Joint estimation of contemporary seed and pollen dispersal rates among plant populations. Mol Ecol Resour 12:299–311

    Article  CAS  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94:13–22

    Article  CAS  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Klein EK, Muller-Landau HC, Santamaria L (2014) Space, time and complexity in plant dispersal ecology. Mov Ecol 2

  • Roland CA, Schmidt JH, Johnstone JF (2014) Climate sensitivity of reproduction in a mast-seeding boreal conifer across its distributional range from lowland to treeline forests. Oecologia 174:665–677

    Article  PubMed  Google Scholar 

  • Roschanski AM, Csilléry K, Liepelt S, Oddou-Muratorio S, Ziegenhagen B, Huard F, et al. (2016) Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps. Mol Ecol 25:776–794

    Article  PubMed  Google Scholar 

  • Rovelli E (1995) La distribuzione dell’abete (Abies alba Mill.) sull’Appennino. Monti e Boschi 6:5–13.

  • Royal Botanic Gardens Kew (2015) Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (July 2015)

  • Sagnard F, Pichot C, Dreyfus P, Jordano P, Fady B (2007) Modelling seed dispersal to predict seedling recruitment: recolonization dynamics in a plantation forest. Ecol Model 203:464–474

    Article  Google Scholar 

  • Sakai A, Matsui K, Kabeya D, Sakai S (2003) Altitudinal variation in lifetime growth trajectory and reproductive schedule of a sub-alpine conifer, Abies mariesii. Evol Ecol Res 5:671–689

    Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Shohami D, Nathan R (2014) Fire-induced population reduction and landscape opening increases gene flow via pollen dispersal in Pinus halepensis. Mol Ecol 23:70–81

    Article  CAS  PubMed  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landscape Ecol 21:821–836

    Article  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) Computer programs: Onesamp: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301

    Article  PubMed  Google Scholar 

  • Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, et al. (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439

    Article  Google Scholar 

  • Urbinati C (2014) Final report of the project: Caratterizzazione genetica, ecologico-strutturale e dendrocronologica dei popolamenti di abete bianco del Parco Nazionale del Gran Sasso e dei Monti della Laga. Università Politecnica delle Marche.

  • Valbuena-Carabaña M, González-Martínez SC, Sork VL, Collada C, Soto A, Goicoechea PG, et al. (2005) Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in Central Spain. Heredity 95:457–465

    Article  PubMed  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Vendramin GG, Ziegenhagen B (1997) Characterisation and inheritance of polymorphic plastid microsatellites in Abies. Genome 40:857–864

    Article  CAS  PubMed  Google Scholar 

  • Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Körner C (2012) Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. J Biogeogr 39:1439–1449

    Article  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the EU project LinkTree (EUI2008-03713, under the ERAnet-BiodivERsA call), the COST Action FP1202 MaP-FGR, the Italian MIUR project ‘Biodiversitalia’ (RBAP10A2T4) and the National Park of Gran Sasso - Monti della Laga (project: Caratterizzazione genetica, ecologico-strutturale e dendrocronologica dei popolamenti di abete bianco del Parco Nazionale del Gran Sasso e dei Monti della Laga).

We thank Carlo Urbinati, Alma Piermattei, Valeria Gallucci, Matteo Garbarino, Elena Bianchi, Elia Vajana, Dragos Postolache, Catia Boggi, Daniele Di Santo and the staff of the National Park of Gran Sasso - Monti della Laga for the help during the sampling and lab work. We are grateful to Brad Oberle and Stefano Leonardi for their very useful suggestions during the data analysis and writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Piotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Microsatellite data with geographic coordinates are available on Figshare at https://dx.doi.org/10.6084/m9.figshare.3811587.v1.

Additional information

Communicated by S. C. González-Martínez

Electronic supplementary material

ESM 1

(DOCX 25 kb)

ESM 2

(DOCX 806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonarduzzi, C., Piotti, A., Spanu, I. et al. Effective gene flow in a historically fragmented area at the southern edge of silver fir (Abies alba Mill.) distribution. Tree Genetics & Genomes 12, 95 (2016). https://doi.org/10.1007/s11295-016-1053-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1053-4

Keywords

Navigation